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Abstract

A guitarist’s search for ‘tone’ – their ideal timbre – can lead them to exploring count-

less guitar effects. Many players yearn for the tone of equipment from the early days

of electric guitars. Now quickly becoming a mature field, Virtual Analogue modelling

aims to digitally emulate analogue audio equipment in real-time, making potentially

rare devices more accessible. A subset of Virtual Analogue of particular interest is

found in the physical modelling of audio circuits, where circuit-level models are built

from models of electronic components, drawing upon both widely transferable physi-

cal concepts and engineering methods.

Despite the increasing ubiquity of physical models, the simulated input/output be-

haviour is rarely compared to that of real circuits. The main contribution of this work

is to reconcile this disparity with the presentation of two complementary identifica-

tion procedures that aim to find a model with minimal difference to a reference circuit.

Focusing on guitar pedals, measurements of the circuit are taken solely from existing

input and output connections to reduce the required measurement time in compari-

son to measuring each component individually, which also prevents any damage being

caused from the deconstruction of the device.

The identification approaches proposed in this study utilise an optimisation algo-

rithm that minimises the difference between the output of candidate models to that

of a reference circuit by modifying the values of the physical component parameters.

Within the required simulation, the solving of nonlinear equations is a likely source

of inefficiency and even failure, prompting the search for an algorithm that avoids

these issues. Uncertainty about the accuracy of less well understood components can

also lead to difficulties in the circuit identification. A component that is found to be

markedly different is the germanium BJT – a core component present in a vintage case

study – and is thus the focus of a component-level identification.

Of the two proposed identification procedures, the first aims only to minimise the

output error, discarding accuracy at a component level, and placing a focus on minimis-

ing the computational expense of the identification. In addition to high fidelity models,

i



Chapter 0. Abstract

results point towards a strategy to overcome the curse of dimensionality when address-

ing circuits with a large number of components. The second, more physically valid

procedure aims to retrieve accurate parameter values of each of the circuit’s compo-

nents such that the estimated component values remain valid under modifications to the

circuit. To address possible non-convergence problems, an approach is developed that

makes use of multiple measurement sets involving additional components of known

value, thus introducing further constraints on the search space. The performance of

both procedures is exemplified and evaluated by means of case studies.
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Chapter 1

Introduction

“The numbers all go to eleven. Look, right across the board,

eleven, eleven, eleven and...”
Nigel Tufnell, “This is Spinal Tap”

Analogue audio effects are devices which attract passionate views and loyalty from

their users, perhaps due to the strong emotional connection a musician forms with

their equipment when writing and playing music. With the development of digital

technology and digital signal processing (DSP) reaching a point where such audio

effects using DSP can be produced at scale, a competition has begun between analogue

and digital effects. Musicians accustomed to the sound of analogue equipment have

oft stated that the new digital effects are lacking of character or ‘warmth’ (e.g. [1]).

This in turn has inspired the development of the field of Virtual Analogue (VA) which

aims to capture the sound of analogue effects to a degree at which these musicians are

convinced that no detail has been lost [2].

Research into VA has produced models of a wide variety of different circuits and a

similarly wide range of techniques. One way of dividing the approaches to VA mod-

elling is through how much information about the circuit is supposed a priori. This

divides VA models into a sliding scale of classifications from white box to black box,

white box modelling referring to a model built from physical first principles, whereas

black box modelling uses only the response of a device to excitation, assuming only

the bare minimum about the device’s underlying behaviour [3]. Approaches at both

extremes of the scale can successfully model the nonlinear behaviour that give many

popular effects their signature sound (e.g. overdrive, distortion), though each has their

own benefits.

White box models – referred to in this work as physical models due to their for-

mation from physical phenomena – are designed using information extracted from
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schematics. Schematic information is broadly divided into topology and a circuit’s

component parameter values, e.g. resistance. Perhaps the most notable example of

physical modelling is SPICE - Simulation Programme with Integrated Circuit Empha-

sis, pioneered at UC Berkeley by Nagel and Pederson [4]. While SPICE software can

simulate a diverse range of circuits and perform many useful analyses, fundamentally

SPICE is intended for circuit designers and not musicians. In particular the feature

missing from SPICE but demanded by digital audio effects is the ability to simulate

in real-time, pushing the field towards algorithms described as “real-time SPICE” by

David Yeh [5]. Such algorithms include Wave Digital Filters, Port Hamiltonian Sys-

tems, and state-space models, discussed in Chapter 2.

By designing these models from a precise and complete set of information given by

our understanding of electronic components and how they perform when assembled in

circuits results in models that inherently captures much of the behaviour of real circuits.

However, several potential discrepancies exist: first should the information be taken

from a schematic it does not refer to a real circuit. For example, component parameter

values will be given within a tolerance and not to exact values. Secondly there may

be components present that exhibit behaviour not sufficiently captured with existing

models. Most authors in the field of VA treat this discrepancy as inconsequential,

comparing their models to SPICE, e.g. [6, 7]. This does not account for the potential

difference between SPICE and measurements of a specific device, which given the

search for the unique qualities of analogue audio effects may be larger than assumed.

One method of designing a physical model from measurements of a real circuit is

to measure each component individually. This process is arduous: while ubiquitous

tools such as LCR meters and multimeters have been designed to measure the primary

parameters of components such as resistors and capacitors, the measurements are diffi-

cult to perform while the components are connected in a circuit. To acquire an accurate

direct measurement would necessitate the disassembly the circuit through desoldering.

Further, components with more than two terminals typically require specialist equip-

ment and software packages to extract parameter values suitable for simulation, for

instance the Bipolar Junction Transistor [8].

Figure 1.1 shows an example diagram of a guitar pedal, labelling the elements that

are exposed to the user as well as the internal electronic components. No knowledge of

the internal circuit is required in the design of black box models, bypassing the need to

measure each component. The model reproduces the behaviour of the circuit deriving

the required information from measurements of the circuit’s output in response to a

given input.
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Figure 1.1: Cutaway diagram showing the internals of an guitar pedal, noting the dif-

ference between audio parameters – those exposed to the user in this case by knobs –

and component parameters, which define the behaviour of a specific component like

resistance (here noted by R).

In addition to the input/output relation are the ‘audio parameters’, e.g. the knobs

on the top of a pedal that a player tunes to produce their desired tone. Modelling

potentiometers and their encompassing circuit physically automatically encapsulates

the change in behaviour relative to a change in audio parameters. Within physical VA

modelling literature exists specific research into how to update a model’s audio param-

eters with efficiency, noting the importance for emulation [9]. In contrast, modelling

through input/output measurements usually fixes the position of each audio parameter

in one position to create the model (e.g. [10, 11]). Capturing multiple potentiome-

ter positions therefore requires multiple identifications of the circuit and effectively

multiple models based on each set of measurements.

1.1 Thesis objectives

The main aim of this work is to identify guitar effect circuits using physical models

and input/output measurements. This strategy establishes a link between the philoso-

phies of black box and physical modelling, simultaneously avoiding the need of circuit

disassembly while utilising the circuit’s topology to capture changes in behaviour due
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to audio parameters.

The primary objectives of this work are founded in providing suitable models for

use in the circuit identification, followed by the goals of said circuit identification:

• investigate and develop suitable root-finding algorithms for the efficient and ro-

bust simulation of nonlinear circuits using physical models;

• in the context of VA, analyse the suitability of existing component models for

the germanium BJT - a component found in a selected case study for the identi-

fication;

• develop methods for minimising the difference in input/output behaviour be-

tween circuit and model through identification;

• develop methods for retrieving accurate values of component parameters from

input/output measurements of a circuit, again through identification.

A notable difference is seen between the two identification objectives. While the

accurate estimation of physical component parameter values may initially seem like

the clear objective when identifying circuits with physical models, it is not necessary

in all modelling scenarios. A more utilitarian objective is simply the capture of the

input/output behaviour of the circuit resulting in minimal observable differences, here

noted by the term ‘calibration’. Differences between the two identification objectives

are further expounded in Chapter 5.

1.2 Thesis outline

Broadly the thesis progresses towards the circuit-level identification procedures first

through a study of the background of the field, followed by studies focussed on ele-

ments that may prevent a successful identification, namely root-finding algorithms and

the identification of the germanium BJT.

Chapter 2 presents a study of the surrounding literature with two primary focusses.

The first focus is on the physical modelling of audio circuits, noting different mod-

elling paradigms with specific detail into deriving models used in the remainder of the

thesis. Models of individual components are also discussed and how more complex

component models may be derived from measurements. The second focus is the ex-

ploration of existing identification strategies as applied to audio circuits, with specific

strategies from each of black and grey box, and physical models.
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Chapter 3 presents a comparative study into root-finding algorithms. Although

this study is isolated from the main theme of identification it is essential to have a

robust and efficient root-finding algorithm to ensure that the identification procedure

is successful. A range of relevant algorithms are discussed, and two new algorithms

are presented that attempt to improve performance by using information derived from

the circuit model. The two new algorithms are then compared with three existing

algorithms to determine whether they offer improvement, and which algorithms are

most suitable for the simulation of nonlinear circuit models.

The component-level identification of the germanium BJT is presented in Chapter

4. Through comparison of intial measurements of two germanium BJTs and one silicon

BJT, a marked difference is found between semiconductor materials demonstrating the

need for additional model complexity. The previously applied Ebers-Moll model is

then extended towards the Gummel-Poon model, both of which are identified with a

hybrid parameter extraction/optimisation approach. Finally, the identified models are

used in circuit models to determine the difference between the BJT models of varying

complexity when applied in a VA model.

Having tackled the pre-requisite issues required for the identification procedures,

it is then possible to begin the discussion of circuit-level identification. An initial

overview of the identification procedures is supplied in Chapter 5, with each element

of both procedures progressively introduced for analysis resulting in a clear picture of

their application to circuit measurements.

Calibration is discussed in full in Chapter 6. Using the results of the BJT identifica-

tion, the Dallas Rangemaster Treble Booster is identified from input/output measure-

ments of a real-world circuit. Through analysis of the identification problem it is found

that changes in some component parameter values results in little change in the output

of the circuit, suggesting they may be fixed and therefore removed from the identifica-

tion. Using this information it is then investigated whether the optimisation becomes

more efficient when operating on a reduced set of parameters. A further study of sil-

icon vs. germanium BJTs is presented by exchanging the BJT of the Rangemaster,

indicating which circuit identification produces a more accurate model.

Chapter 7 presents the second identification procedure: parameter estimation, from

which component parameter values are the objective. Circuit models are analysed to

determine the feasibility of estimating their component parameters, and a strategy of

ensuring this property is found through the inclusion of a known component. A linear

circuit with multiple audio parameters and a nonlinear circuit are both used as case

studies.
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Finally the thesis is concluded in Chapter 8, where the contributions of the thesis

are summarised as well as the thesis on the whole. Future research directions are

discussed for those inclined to pursue them.

Additional resources for the thesis are noted throughout the work in relevant places

and hosted online1.

1.3 List of Publications

The following papers have been published over the course of researching the work in

this thesis:

1. B. Holmes and M. van Walstijn. ‘Improving the robustness of the iterative solver

in state-space modelling of guitar distortion circuitry’, Proceedings of the 18th

International Conference on Digital Audio Effects, Trondheim, Norway, Dec.

2015.

2. B. Holmes and M. van Walstijn. ‘Physical model parameter optimisation for cal-

ibrated emulation of the Dallas Rangemaster Treble Booster guitar pedal’, Pro-

ceedings of the 19th International Conference on Digital Audio Effects, Brno,

Czech Republic, Sept. 2016

3. B. Holmes, M. Holters, M. van Walstijn. ‘Comparison of Germanium Bipolar

Junction Transistor Models for Real-Time Circuit Simulation’, Proceedings of

the 20th International Conference on Digital Audio Effects, Edinburgh, Scot-

land, Sept. 2017

1https://bholmesqub.github.io/thesis/
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Chapter 2

Circuit modelling and identification:
background

To frame the research within this thesis the preceding (and concurrent) work in phys-

ical modelling and identification of audio circuits must be expounded. The chapter is

divided into two main sections: the first section discussing the derivation of the chosen

physical modelling algorithm and alternate algorithms. The latter section then dis-

cusses circuit identification in VA and the complementary black and grey box models

that have been utilised in the literature.

2.1 Physical circuit modelling algorithms

Many competing approaches of physical circuit modelling exist, each with different

combinations of desirable properties such as stability, passivity, capability to handle

nonlinear components etc. At the beginning of this research one approach was a clear

leader for modelling a wide variety of circuits exhibiting nonlinear behaviour: state

space models. As such this approach was adopted for use in the circuit identification.

Over the duration of this work the gap of capabilities between state space modelling

and other approaches has narrowed. Those approaching the problem today may have

similar success with other modelling algorithms.

This section describes each of the competing approaches: Wave Digital Filters

(WDF), Port Hamiltonian Systems (PHS), and state space models. Component models

are first discussed, being largely independent from each approach and necessary for

their construction. Focus is then given to the derivation of both state space models and

the other modelling paradigms used in the identification strategies, all of which are

derived from the Modified Nodal Analysis (MNA) representation of a circuit.
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(PNP) BJT symbol:

+

−
Veb

+

−
Vec

+

−
Vcb

Ib

Ic

Ie

Diode symbol: + −
Vd

Id

Capacitor symbol: + −
Vc

Ic

Resistor symbol: + −
Vr

Ir

Figure 2.1: Schematic symbols for each of the components used throughout the thesis.

2.1.1 Component modelling

In physical circuit modelling components are typically independent of the selected

circuit-level modelling algorithm. Excluded from this assumption are more complex

nonlinear components which often require additional considerations to enable compat-

ibility (e.g. operational amplifiers in models derived using MNA [12]). Component

models can be defined in terms of an I-V, or current-voltage, relationship, though aux-

iliary variables are common for describing the underlying physical process that links

voltage to current. One or more component parameters are used in the definition of the

I-V relationship, the value(s) of which is related to a specific instance of the component

e.g. a resistor has an inherent resistance. Within this section the most commonly used

component models are discussed and their parameters noted. Component parameters

are of particular interest as they become the variables upon which the identification

process operates.

A component model can be broadly defined by two properties: whether it is linear

or nonlinear, and whether it is static or dynamic. The term ‘dynamic’ notes memory in

the device, i.e. that the behaviour of the component is dependent upon past behaviour,

contrary to ‘static’ which indicates that the component’s response is exclusively in-

stantaneous. An example of a static component is the resistor, and for dynamic the

capacitor. To create a model for simulation, dynamic components require discretisa-
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tion in the time domain which will be discussed during the derivation of a computable

model. This section focusses on the continuous time domain representations.

‘Linearity’ is a well defined mathematical concept, requiring a given function (in

this case the I-V relation) to satisfy the two properties

• additivity: f(x+ y) = f(x) + f(y);

• homogeneity : f(αx) = αf(x).

Simply put, nonlinear component models are any which do not satisfy these properties,

for example the diode and BJT.

In reality every component will have some element of dynamic and nonlinear be-

haviour but component models frequently neglect these factors. This is to first place the

focus on the ideal underlying behaviour as opposed to the parasitic/non-ideal. Further,

the effect of non-ideal behaviour is often negligible. The component models discussed

in this section are found from their fundamental underlying physical behaviour. Each

case study used throughout the thesis consists of only four components (and ideal volt-

age sources): the resistor, capacitor, diode, and BJT.

Resistor

A resistor is defined by Ohm’s law, parameterised using resistance R. Ohm’s law can

be equivalently represented by a conductance noted here by 1/R = GR:

Vr = IrR, Ir = VrGR. (2.1)

Ohm’s law defines the voltage as proportional to the current, the specified proportion

being the resistance.

Capacitor

From a physical perspective of the capacitor, voltage is proportional to the charge Q

on the capacitor, V = Q/C. As with the resistor the proportionality is controlled by

a parameter, here capacitance C. Charge is equal to the integral of the current with

respect to time, leading to the definition of the I-V relationship,

Vc =
1

C

∫
Ic dt, Ic = C

dVc

dt
. (2.2)

Capacitor memory is clear by the presence of the integral/derivative with respect

to time. The model is linear as one quantity is proportional to the other, only shifted in

time.
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The inductor is a counterpart of the capacitor, where the current is proportional to

the integral of the voltage. It is not featured in any circuits studies throughout this work

and therefore its mathematical definition and any further discussion about it is omitted.

Diode

A frequently used model of the diode is found in the Shockley model [13, 14, 15]:

Id = Is

(
e
Vd
NVt − 1

)
. (2.3)

Parameters of the model are saturation current, Is, and ideality factor/emissivity coef-

ficient N . The term Vt is the thermal voltage and is not a parameter, its value is defined

by the temperature of the pn-junction, i.e.

Vt = TK
k

q
, (2.4)

where TK is the temperature in Kelvin, k is Boltzmann’s constant and q is the charge on

an electron. The value of Vt is not inherent to a specific diode; it would be equivalent

for multiple diodes so long as the temperature of the pn-junction is the same.

As the diode is nonlinear and cannot be represented by a linear impedance, the

component is often modelled using a voltage-controlled current source (VCCS) that

directly represents the I-V relationship (e.g. [13]). The same is true of the BJT which

instead uses two VCCS connected.

Bipolar Junction Transistor

The most commonly used model for the BJT in VA is the Ebers-Moll model, e.g.

[16, 9, 17]. This model can be expressed by 2 of 3 I-V relationships (the third inferred

from superposition):

Ib =
Is

βf

(
e
Veb
NVt − 1

)
+
Is

βr

(
e
Vcb
NVt − 1

)
, (2.5)

Ic = Is

(
e
Veb
NVt − 1

)
− Is

βr + 1

βr

(
e
Vcb
NVt − 1

)
. (2.6)

Note that Vec = Veb− Vcb, and Ie = −(Ic + Ib). The parameters of the Ebers-Moll

model are Is and N , directly from the Shockley diode model, and βf and βr which are

the forward and reverse current gains respectively.

10
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DUT

−+Vgk

V

A
Ig −+Vpk

V

A
Ip

Figure 2.2: Measurement setup for simultaneously capturing voltage and current data

of a vacuum tube [25].

Additional nonlinear component models

Circuits favoured by analogue-enthusiasts utilise a wide variety of components that

exhibit unique nonlinear behaviour. Although limited to diodes and BJTs in this work,

researchers in the field of VA have modelled many more components. Examples of

this include the nonlinear behaviour of the op-amp as the output approaches the power

supply voltage [12], and the saturating behaviour of the transformer [18, 19].

One component that has been of particular focus in the literature is the valve or

vacuum tube, used in e.g. [20, 7, 21]. Recent developments include a phenomenolog-

ical model presented by Koren in [22], a physical-interpolative approach by Cardarilli

[23], and a physically motivated model by Dempwolf [24], which while still using

free, non-physical parameters, overcomes the an issue present in the other two models:

discontinuities in the I-V derivatives.

Studies of the vacuum tube provide important context to this work as many are

based on measurements of a real device. The tube is a 3-terminal, nonlinear device

and as such demands a similar measurement strategy to the BJT. Measurements of

the tubes are a necessity because the models are novel and not simply adapted from

existing models to work in real-time modelling paradigms. Equipment is required to

simultaneously measure the grid and plate current, and grid-cathode and plate-cathode

voltages of the device under test (DUT). One example of such a measurement setup

was utilised in [25], and is repeated in Figure 2.2. Multiple surfaces are found, e.g. Vpk,

Vgk vs. Ip, from which component model parameters are extracted, in [26] using curve-

fitting algorithms. The result is a component model that directly relates to a given

device, and should the device be utilised in a circuit that is being modelled, having

exact parameter values will yield a circuit model with high accuracy, as validated in

[26] in the case of a common-cathode amplifier.

11
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2.1.2 Modified Nodal Analysis

To derive each circuit model in this work, Modified Nodal Analysis (MNA) is used.

MNA has been used frequently in model derivations in recent literature, most notably

[27, 28, 9, 29]. The original publication by Ho [30] presented the work to address the

limitations of traditional nodal analysis, the most important of which for VA circuit

models being the inability to model voltage sources.

Nodal analysis expresses a circuit as a set of nodes, utilising Kirchoff’s Current

Law (KCL) which states that the sum of the currents entering and exiting a node is

equal to zero:

0 =
N∑
k=1

Ik. (2.7)

Used in combination with a component’s I-V relation, for linear components with only

current sources, a circuit is generally expressed as

Gv = i, (2.8)

where G contains the circuit conductances placed to link nodal voltages and current

sources. Within this work resistors and capacitors are the only linear component mod-

els used, for which G can be decomposed into

G = NT
RGRNR + NT

CGCNC. (2.9)

Here GR and GC are diagonal matrices containing the resistances and capacitances.

The connections of the components are restricted to the incidence matrices NR and

NC, which contain values 1 and −1 to indicate connections.

To adapt nodal analysis to enable the use of voltage sources, the model is extended

to include u which contains the known voltage sources, and iv which are the respec-

tive unknown currents through the voltage sources. The admittance matrix G is then

extended to contain the connections of the voltage sources, resulting in

S =

[
G NU

NU 0

]
, (2.10)

where NU is an incidence matrix specifying the connections of the voltage sources.

The zero-value elements in the lower right of S will remain empty for each of the

models in this work, though are required for circuits featuring components such as op-

amps, modelled with voltage controlled voltage sources [12]. The full MNA model is

expressed by

S

[
v

iv

]
=

[
i

u

]
. (2.11)

12
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With this form each of the chosen case studies in this work can be modelled. Voltage

controlled current sources in i can represent many nonlinear component models like

the BJT. The full MNA form as given in (2.11) is inefficient however as even linear

circuits require a matrix inversion at each time step that solves for each of the unknown

voltages. This expense can be reduced as it is uncommon to require the voltage at each

node. For linear circuits a model that condenses the input/output behaviour into few

calculations can be found in transfer functions. As previously mentioned for nonlinear

circuits state space models will be used, as derived through the Nodal DK method.

Transfer functions

Transfer functions model linear circuits in the frequency domain as a relation between a

single input and output. Commonly voltages are the quantity of interest, used to drive

circuits and simultaneously measured at the output, resulting in a transfer function

given by

H(s) =
Vo(s)

Vi(s)
=

bms
m + bm−1s

m−1 ... + b1s+ b0

amsm + am−1sm−1 ... + a1s+ a0

. (2.12)

Here s is the Laplace variable and bm and am are the coefficients that define the func-

tion’s response. Though typically the Laplace variable refers to the sum of a steady

state term jω and transient term σ i.e. s = σ + jω, the signals of interest are assumed

to be steady-state. In the steady-state case σ = 0 reducing the Laplace transform to

the Fourier transform, though the Laplace variable is used to remain consistent with

literature.

In some cases it is useful to find linear models of circuits exhibiting nonlinear

behaviour, for example to provide a course approximation of the circuit’s frequency

response. Nonlinear component models must be linearised to be used in a transfer

function. A linearised component model is found by taking the derivative of the non-

linear function at an operating point. This model can then be used as a conductance in

G. In the instance of a diode for example, the diode’s linear conductance is given by

GD = Is
NVt

e
Vq
NVt where Vq is the quiescent voltage or voltage at the selected operating

point.

Integration with respect to time in the time domain becomes 1/s in the frequency

domain, so the frequency domain component model of the capacitor becomes V (s) =

I(s)/(sC).

One transfer function describes the relationship between one input and one output

of a system. First the input must be selected, with remaining voltage inputs becoming

open circuits which may require some adaptation to ensure there are no hanging nodes

13
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(nodes with only one connection that cause computational issues). The vector of nodal

voltages and currents through voltage sources is then solved for by inverting S,[
v

iv

]
= S−1

[
i

u

]
. (2.13)

An additional incidence vector must then be created to select the output, NO, which

contains 1 at the positive node and -1 at the negative node. If the output is referenced to

ground then only one of the non-zero values is required with polarity at the discretion

of the modeller. Multiplying both sides of (2.13) by NO equates the system to the

output voltage Vo,

Vo = NO

[
v

iv

]
= NO S−1

[
i

u

]
. (2.14)

The result is a scalar equation from which the ratio Vo/Vi can be found, i.e. the transfer

function.

Nodal DK method

The Nodal DK method uses a state space model that is capable of modelling nonlin-

ear behaviour in circuits. This method originated as the K-method by Borin et. al.

[31], named after Kirchoff variables to distinguish it from WDFs. The K-method per-

forms transformations on time-dependent and nonlinear equations to alleviate delay-

free loops, enabling solutions to implicit equations to be stored in a LUT and thus

preventing online root-finding. This was then adapted by Yeh to directly discretise dy-

namic components use and MNA to enable algorithmic derivation of circuit models.

A discussion of the method refers to it as the Nodal DK method [9], and it is from this

source that the description in this section is informed.

Dynamic components are discretised directly using the trapezoidal rule. For the

capacitor:
1

2
(IC(n) + IC(n− 1)) =

C

T
(VC(n)− VC(n− 1)) , (2.15)

where T is the sampling period. As with previous component models the desire is

to find an I-V relationship, which can be found through expressing the discretised

capacitor as

IC(n) = GC (VC(n)− VC(n− 1))− IC(n− 1), (2.16)

where GC = 2C/T for the Nodal DK method. The two historic quantities can be

grouped into a state term, such that

IC(n) = GCVC(n)− x(n− 1), (2.17)

14
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where

x(n) = GCVC(n) + IC(n). (2.18)

To find the recurrence relation that updates the state variable x, (2.17) is substituted

into (2.18) to find

x(n) = 2GCVC(n)− x(n− 1). (2.19)

To derive a this form from the full MNA, the RHS vector from (2.11) can be de-

composed into the relevant quantities,

S

[
v

iv

]
=

[
NC

0

]
x(n− 1) +

[
0

I

]
u(n) +

[
NN

0

]
f(v(n)), (2.20)

which shows that the previous state x(n− 1) forms a current source where the capac-

itors are placed, determined by NC. This is also true for the nonlinear components

with f(v(n)) and NN. The system matrix S is inverted to find the solution for the LHS

vector, [
v

iv

]
= S−1

([
NC

0

]
x(n− 1) +

[
0

I

]
u(n) +

[
NN

0

]
f(v(n))

)
. (2.21)

Multiplying the equation by the relevant incidence matrices reveals the state space

matrices for each variable, e.g. multiplying by NN produces DN − FN. An exception

to this is for the state update, which requires the additional terms from (2.19), i.e.

x(n) = 2 GCS
−1

([
NC

0

]
x(n− 1) +

[
0

I

]
u(n) +

[
NN

0

]
f(v(n))

)
− x(n− 1).

(2.22)

The complete discrete-time state space model is given by the state update, output,

and nonlinear function equations,

x(n) = Ax(n− 1) + Bu(n) + Cf(vn(n)), (2.23)

y(n) = DOx(n− 1) + EOu(n) + FOf(vn(n)), (2.24)

vn(n) = DNx(n− 1) + ENu(n) + FNf(vn(n)), (2.25)

where x is the model state, y the output, and u the input. Matrices A−C, DO − FO

and DN−FN control the weighting of each variable used in the update of the model for

state, output, and nonlinearities respectively. The generic nonlinear function f(vn(n))
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contains the relevant I-V relationships. The state space matrices are given by

A = 2GC

[
NC 0

]
S−1

[
NC 0

]T

− I, (2.26)

B = 2GC

[
NC 0

]
S−1

[
0 I

]T

, (2.27)

C = 2GC

[
NC 0

]
S−1

[
NN 0

]T

, (2.28)

DO =
[
NO 0

]
S−1

[
NC 0

]T

, (2.29)

EO =
[
NO 0

]
S−1

[
0 I

]T

, (2.30)

FO =
[
NO 0

]
S−1

[
NN 0

]T

, (2.31)

DN =
[
NN 0

]
S−1

[
NC 0

]T

, (2.32)

EN =
[
NN 0

]
S−1

[
0 I

]T

, (2.33)

FN =
[
NN 0

]
S−1

[
NN 0

]T

. (2.34)

To calculate one time step of the model, first the nonlinear equation (2.25) must be

solved, which can be phrased as a root-finding problem by introducing a new function

g(vn(n)) = p(n) + FNf(vn(n))− vn(n) = 0, (2.35)

where p(n) = DNx(n − 1) + ENu(n). The value of vn that satisfies this equation

is then used in calculating the output at the current time step and updating the state

variable.

Parameter focussed representation

One of the main objectives of this thesis is to estimate the values of component param-

eters through an identification process that uses measurements of a circuit’s output in

response to a given input. A factor that determines the feasibility of this objective is the

parametric structure of the employed circuit model, i.e. how the parameters appear in

the model relating input to output. To that end the MNA-derived models utilised in this

work require analysis to determine whether their parameters can be directly estimated.

The selected analysis that is applied to case studies starting in Section 5.1.3 uses

symbolic algebra as applied in ecological models in [32]. A common flaw is found

in transfer functions derived from circuits: the transfer function coefficients contain
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highly complex combinations of component parameters, as noted in e.g. [33, 34, 35].

A similar issue is present in the elements of state space model matrices. Complexity

in the combinations of parameters used in the model increases the complexity of the

analysis, increasing the difficulty in detecting whether the analysis has been performed

correctly.

It therefore serves to find a similar model form to transfer functions and state space

models with an equivalent parametric structure of these models but with reduced com-

plexity. Three general simplifications can be achieved starting with the general MNA

form shown in (2.11):

• Ideal voltage sources contribute no parameters towards the model and therefore

can be removed and replaced with open circuits to preserve the circuit topology.

• Factors related to time or frequency such as those introduced by discretisation

can be omitted. The model is not used for computation and therefore a continu-

ous time domain model can be used.

• In the continuous time domain resistors operate on voltages v, while capacitors

operate on voltage derivatives v′ meaning that combinations of resistors and

capacitors can be isolated from each other.

Begin with a circuit model as defined by the general MNA form shown in (2.11).

Voltage sources contribute u and corresponding currents iv in the model. Removing

these vectors returns the MNA to the nodal form in (2.8) with one key difference:

the topology including voltage sources has not been altered but the model has fewer

elements, simplifying the anticipated analysis.

A transform to the frequency domain or discretisation is not required as the model’s

parametric structure is not affected by these processes. Resistors and capacitors must

then be separated to act on nodal voltages and voltage derivatives independently, re-

sulting in

NR
T GR NR v + NC

T GC NC v′ = NN f(vn). (2.36)

The only current sources in i will be those used to model nonlinear components through

VCCS, and so is instead expressed as f(vn). Underlined in blue are all matrices that

relate to the topology of the modelled circuit, and in bold red are matrices that contain

parameters. A complete parametric structure of the MNA form is contained within

this model, with the only variables that are not component-parameters being the nodal

voltages which are required to specify the circuit topology.
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The application of this model form may not be immediately clear. Determining

whether parameters can be estimated through symbolic algebraic analysis is applied

to case studies beginning in Section 5.1.3, where this model form is first utilised. The

parameter focussed representation will be shown (for the given case studies) to provide

equivalent results but with a more visually intuitive format.

2.1.3 Circuit-level modelling paradigms

Wave Digital Filters

Linear Wave Digital Filters (WDFs) were introduced in [36] with a broad presentation

of their uses in [37]. Electronic circuits are modelled in the wave domain in a modular

approach where the passivity of the circuit is maintained. Kirchoff variables voltage

and current are transformed into wave variables, incident and reflected waves a and b,[
a

b

]
=

[
1 R0

1 −R0

][
V

I

]
, (2.37)

whereR0 is the port impedance, unrelated from resistances in circuits as discussed thus

far. Through careful selection of the value ofR0 one port is chosen to be reflection free

which can be used to break a delay-free loop, and thus enables the inclusion of a single

nonlinearity in a model, thoroughly discussed in [38] and exemplified in e.g. [14].

When addressing multiple nonlinearities the situation becomes more challenging.

Perhaps the most direct method of breaking delay-free loops is the insertion of unit

delay elements, used for example in the modelling of circuits featuring tubes [39, 40].

A second approach is found by iterating over the whole model in an artificial di-

mension to circumvent the issue of delay-free loops. This was proposed in [41] where

it is applied to a bridged-T notch filter, which although linear has a challenging topol-

ogy which requires a similar strategy as when facing a nonlinearity. The approach is

further applied to a diode clipper in [42] with an improved iteration strategy, and for

which further root finding algorithms are investigated in [43].

Most prevalent in recent literature is the use of R-type adapters. Use of graph theory

from which R-type adapters originate was first applied to understand the underlying

structure of WDFs in [44, 45]. Use of MNA was applied for the derivation of the R-

type adapter in [29] with application for multiport components, multiple nonlinearities,

and challenging topologies in [46, 47]. This was further applied in [7] with special

concern applied to the root finding algorithms in [48].

The types of circuits that can be successfully modelled using WDFs and an R-type

adapter has been further extended. Circuits featuring op-amps pose a challenge in that
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they instead of a VCCS as utilised in the modelling of diodes and BJTs, a voltage-

controlled voltage source (VCVS) is required. A second challenge is posed by the

connection of multiple VCCS elements, as in the case of series diodes. Forbidden

WDF topologies for op-amps and series diodes were overcome in [49] by generalising

the choice of the in/dependent variable placed at the root of the WDF structure.

Arbitrary topologies and active circuits were approached systematically in [50].

Four junctions were proposed for the unbounded WDF junction, as necessary for cir-

cuits such as the Baxandall tone control. Solutions were also proposed for handling the

negative port resistance R0 that occur in active circuits, localising the resultant com-

plex valued waves that arise. These contributions facilitate the systematic modelling of

circuits previously out of scope of WDF which previously required specific solutions.

Port-Hamiltonian Systems

Port-Hamiltonian Systems (PHS) are derived to conserve the total energy in a system,

naturally capturing the power balance between circuit components. Port- describes the

approach of the decomposition of complex systems into a set of interconnected blocks.

The approach has been applied successfully to several nonlinear audio case studies

(both electronic and electro-acoustic) in the wah-pedal [51], a loudspeaker [52], and

a Fender Rhodes piano [53]. An automated strategy of developing a PHS model with

the use of a component model library was presented in [15]. A PHS representation is

given by [15] 
dx
dt

w

−y

 =

 Jx −K −Gx

KT Jw −Gw

Gx
T Gw

T Jy


 ∇H(x)

z(w)

u

 (2.38)

where x, y and u are the same for state-space models. Component models are defined

by their dissipated power with variable w and function z(w) which are related by

D = z(w)w. For each electronic component D = IV , for example in the case of the

resistor let w = I such that z(w) = IR = V .

Recent advances in PHS include direct inclusion of anti-aliasing into PHS models,

achieved in [54] with the application of continuous time domain trajectories. Addi-

tionally each quantity used in the model has been successfully derived from the power

balance [55].
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State space models

Further developments have occurred in the state space modelling of circuits since the

development of the Nodal DK method. Using the Nodal DK method as a base, in [9]

the model was decomposed using the Woodbury identity to isolate a parametric section

of the model, reducing the computational expense of updating the model when audio

parameter values are changed.

A blockwise decomposition was applied in [56] where nonlinearities were sepa-

rated into cascaded pairs. A higher number of nonlinear equations are solved overall

but due to their division into smaller problems, the overall computational expense is

lower. The decomposition also enabled approximations to be performed to reduce

the number of nonlinear equations being solved concurrently. Improved accuracy is

achieved in [57] where connections between sections are broken, but the connecting

currents are found numerically.

Cases exist in which MNA is incapable of modelling a circuit, for example where

multiple nonlinearities are connected directly. By application of a different under-

lying paradigm (i.e. not MNA), [58] alleviates these issues, producing a state space

model with two series connected diodes without combining the nonlinearities into one

function. This is further applied to a nonlinear model of a transformer using the Jiles-

Atherton model in [19].

2.2 Circuit model identification

2.2.1 Input/Output measurement

Black box

A popular option in recent literature is the tuning of black box models using a swept

sine measurement. A method utilising exponential swept sines was proposed in [60],

designed for the identification of weakly nonlinear systems. An inverse filter was

derived from the swept sine to deconvolve the input from the output in the time domain,

resulting in a what could be described as a nonlinear impulse response.

This method has been used to identify many audio circuits with black box models,

including using Chebyshev polynomials for an overdrive circuit [10], nonlinear con-

volution, Weiner models, and Hammerstein models on a dynamic range effect [61].

Recent revisions have improved the method to enable deconvolution in the frequency

domain which is often more efficient, and the accurate capture of phase behaviour by
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Frequency (Hz)

1st Harmonic
2nd Harmonic
3rd Harmonic

Time

Figure 2.3: Nonlinear impulse response of the single sided diode clipper up to the 3rd

harmonic. (left) Frequency domain amplitude response, (right) time domain impulses

as separated by limits derived in [59].

a modification to the swept-sine signal to ensure that it is synchronised [59].

The synchronised swept-sine is defined as [59]

x(t) = sin
(
2πf1Let/L

)
, where L =

1

f1

round

(
T̂ f1

ln(f2/f1)

)
. (2.39)

Starting and end frequencies are noted by f1 and f2, and T̂ is the approximate duration

in seconds; the real duration modified by the function round which rounds the value

to the nearest integer. To find the nonlinear impulse response an inverse filter of x(t)

is designed using the Fourier transform to efficiently deconvolve the input from the

output in the frequency domain.

Figure 2.3 shows an example swept-sine analysis of a single sided diode clipper,

introduced in Chapter 3. The right plot shows the time-domain impulse responses of

the first 3 harmonics separated by windows marked by the dashed lines. The ampli-

tude response of each of these windowed 3 harmonics is shown in the left hand plot.

Despite not knowing the topology or physical behaviour of the circuit, the swept-sine

has captured the low-pass behaviour of the circuit, as well as the asymmetry of the

nonlinearity indicated by the presence of the 2nd harmonic.

The amplitudes of distortion harmonics are dependent upon the input amplitude of
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the signal1. As the described swept-sine approach maintains a constant amplitude over

the frequency range the resultant nonlinear impulse response will only be valid for that

amplitude of input signal. For example in the application of a diagonal Volterra series

model if a different input amplitude is used the corresponding output waveform show

marked error [62].

To overcome changes in the nonlinear impulse response requires a method of

adapting each response relative to the input signal’s amplitude. A ‘continuous’ set

of Volterra kernals were found in [62] through interpolation of kernels measured at

set levels. To reduce the number of interpolation operations required, a single inter-

polated function is proposed in [63] that is shared across all kernels, but notes this

will not likely be sufficient for strongly nonlinear devices. Results from both publi-

cations demonstrate accurate modelling of the case study circuits over the anticipated

amplitude ranges.

Audio parameters present a similar problem as input amplitude to black-box mod-

els: should an audio parameter value change the model’s output will no longer neces-

sarily fit that of the circuit. Only one publication has approached the subject, modelling

the gain control on a guitar amplifier using Recurrent Neural Networks (RNN) [64].

The gain control is treated as an additional input to the RNN during training. Results of

the RNN show a close match between the amplifier and model output, but only a single

gain setting is used in the results preventing the confirmation of success at modelling

audio parameters.

Grey box

In the case that some information about the audio circuit can be determined the iden-

tification problem is referred to as grey box. Within the field of VA the most notable

example comes from industry in the form of Kemper amplifiers, a ‘profiling’ amplifier

that identifies amplifier circuits using a grey box model [65].

This hardware has inspired a chain of research to surpass the level of fidelity

achieved by Kemper, while also providing analysis and reproducable results. The

method first utilised a Wiener-Hammerstein approach with a static nonlinearity and

some additional elements implemented to mimic the circuit bias, sandwiched between

two parametric equalizers [11]. Iterative optimisation was applied in several targeted

1This is visualised in a video on the accompanying website by changing the input am-
plitude of the swept-sine for the diode clipper as shown in Figure 2.3, with the am-
plitude changed over time. https://bholmesqub.github.io/thesis/chapters/

circuit-modelling-identification/
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stages to capture the behaviour of a tube-based effects pedal. Following this work,

the model was reformatted to use two nonlinear stages staggered in series with three

linear stages, beginning with the linear stage [66]. These choices were made to bet-

ter resemble the topology of a guitar amplifier – i.e. the selected case studies – with

a pre-amplifier and power amplifier surrounded by linear filtering. Listening tests re-

vealed success at modelling clean amplifiers, with results deteriorating when distortion

became more present.

2.2.2 Direct component measurement

Given the objective of finding physical component parameters, direct measurement of

each component would appear to be the obvious choice. An immediate problem lies in

the disassembly of the circuit: there is a risk attached in the form of possible damage

to the circuit which should be keenly avoided if the pedal is vintage/rare.

Direct measurement of components does not only require the probing of the circuit

board, but for maximum accuracy, desoldering of each component. Measuring a typi-

cal two terminal component, e.g. a resistor, is most accurate when a single path to exist

between measurement terminals – through the component – but in a circuit there are

many possible routes between these two points.

Manufacturers may even go as far as to obfuscate their designs. The Klon pedal

used black epoxy across the PCB to prevent the reverse-engineering of the circuit [67].

Only one successful instance of removing the epoxy and reverse engineering the Klon

is required to find the schematic, but to measure each component the epoxy must be

removed each time - a difficult task. The difficulty and ardour of direct component

measurement therefore prompts the search for alternate methods.

2.2.3 Context for the proposed identification strategies

Having discussed the various circuit models and identification strategies used in recent

literature, further context can be provided for the objectives from Section 1.1. It was

stated that physical models were the intended output of the circuit identification. This

choice was motivated to be able to capture the full range of behaviour over different

input amplitudes and audio parameter values. Black box models typically utilise sev-

eral measurements to derive sets of kernels to match behaviour over a range of input

amplitudes, and then further require interpolation in between said kernels to provide a

continuous range. Using a mapping function as in the grey box model from [11] pro-

vides a better fit to a change in input amplitude, though modelling audio parameters
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is still neglected. For physical models the capture of this behaviour is encapsulated

within a single model and the challenge then lies in the design of an identification pro-

cedure which produces component parameter values that define a model with accurate

input/output behaviour over the desired range of inputs and audio parameters.

The measurement strategy utilised to identify circuits using black and grey box

models circumvents the need to disassemble the DUT. Only amplitude levels that are

anticipated from the preceding signal chain are necessary in the measurements, remov-

ing likelihood of damage to internal circuits.

The work presented in this thesis aims for an approach that combines the main ad-

vantage of black-box and grey-box models – i.e. model derivation directly from input-

output measurent data – with the main advantage of physical models – i.e. inherent

modelling of audio parameters. This combination raises new challenges. The compu-

tational complexity of a physical model is related to the number of components in a

circuit, particularly the number of nonlinearities in the components present. For black

and grey box models this complexity is largely independent from the device; the same

model can be reused for many effects, for instance the amplifier model used in [66].

Derivation of kernels from the swept-sine technique is a direct computation from the

input/output relationship, the limitation of signal length being dictated by the memory

of the measurement and computational devices used.

No such direct computation exists as of yet for the component parameters of com-

plex circuits. Therefore the application of optimisation algorithms is required to reduce

the error between model and circuit output, which involves repeatedly simulating the

circuit model output to compare to the measurement. Should a long signal be used

the optimisation process may take prohibitively long periods of time to complete. This

requires the design of an excitation signal that contains all the necessary amplitude

and frequency information while maintaining a short duration, the design of which is

discussed in Section 5.2.1.

A further challenge for physical models lies in the modelling of non-ideal effects,

e.g. parasitic capacitances etc. Black box models are often insensitive to non-ideal

effects, incorporating parasitic behaviour of components into the model without the

need for a change in model topology. For physical models the opposite is true: should

non-ideal effects be present they must be localised to a specific component which then

must be adapted.

If the only objective is to recreate the input/output behaviour of the circuit it is

possible that other components in the model may compensate for this non-ideal be-

haviour, but to what degree will likely depend on components and circuit topology.
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This approach is taken in Chapter 6 where it is investigated how successful a relatively

simple physical circuit model can be calibrated to model the input/output behaviour of

a circuit without considering non-ideal effects.

On the other hand, if the exact values of the component parameters is the objective,

non-ideal behaviour may lead to error in those values preventing successful identifi-

cation. Estimation of parameter values is the objective in Chapter 7 where prior to

circuit measurements, first the measurement equipment is analysed to include the rele-

vant measurement circuitry into the physical circuit model in an attempt to mitigate its

effects.
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Chapter 3

Root finding algorithms for nonlinear
physical circuit models

In the simulation of physical circuit models the algorithm with the greatest variation

in computational-expense is that used to solve the transcendental equations caused by

nonlinear component models. For the Nodal-DK method and similar paradigms these

algorithms are essential in the simulation of any circuit featuring nonlinear behaviour.

Depending on the selected algorithm and nonlinear component model computational

issues may be encountered: the algorithm may not converge to a solution – or not

converge within the time constraint imposed by the computer – causing the model to

fail. It follows that determining an algorithm that can consistently solve said equations

is critical.

Non-convergence at run-time can be prevented by pre-solving the nonlinearity and

storing solutions in a Look-Up Table (LUT). With no time constraint more computationally-

expensive methods can be applied, for example homotopy (further discussed in Section

3.2.4) [27].

While this approach removes the possibility of model failure at run-time, memory

costs can be prohibitive. For the Nodal DK method, a naı̈ve (i.e. without approxima-

tion) LUT must first be of the same dimensionality as the nonlinear equations with an

additional dimension required for each variable parameter present in the model.

Through approximations of a circuit model LUTs can be reduced. For a guitar

preamp with 4 nonlinearities and 3 variable parameters, some LUTs could be reduced

to 3 dimensional, with the largest simplified LUT being 6 dimensional [68]. Further

simplification using interpolation reduced memory requirements but the problem is not

removed.

For this reason this chapter focusses on algorithms that attempt to solve nonlinear-
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ities at run-time. An algorithm is deemed to be ‘robust’ if it can successfully solve the

required nonlinear equations formed by the circuit models within the given constraints

of the computer, i.e. time, arithmetic representation. Example circuits models are sim-

ulated with a variety of solvers to compare the robustness and computational-efficiency

of each algorithm. Given that the nonlinear equations of the Nodal DK method have a

common form, two algorithms are presented that utilise this information.

3.1 Case studies

The two circuits selected for the comparison of algorithms are the diode clipper and

common-emitter amplifier. These circuits use semiconductor elements, the diode and

BJT, which both consist of pn-junctions modelled with exponential terms. The algo-

rithms are therefore tested on univariate and multivariate cases of similar nonlineari-

ties, providing some level of comparability of results between case studies. Further, as

the derivative of an exponential is itself an exponential, equations formed of exponen-

tials are difficult for gradient-based algorithms to solve – and difficult for other solvers

due to the rapid rate of change – thus challenging each algorithm in the comparison.

3.1.1 Diode clipper

The diode clipper sub-circuit is commonly found in distortion, overdrive, and ‘tube

screamer’ effects, and has been used as a case study for countless physical circuit

modelling publications dating back to [13](and likely further). The basic function of

the diode clipper is to limit the voltage applied across the input terminals to the circuit,

causing a soft-clipping distortion effect at the output.

Diode clipper circuits can take numerous different forms; Figure 3.1 shows three

different versions. Common between each version is an RC sub-circuit forming a

first-order lowpass filter. The resistor also forms an effective nonlinear resistor divider

with the diode, where the resistance of the diode changes w.r.t. the voltage across it.

As the voltage increases the resistance of the diode drops thereby reducing the output

amplitude, causing a clipping effect.

In (a), the single-sided clipper, the voltage is only limited when it exceeds a positive

voltage, allowing negative voltages to pass un-clipped. For the clipper in (b) the voltage

signal is limited in both positive and negative regions equally. By placing two diodes

in series for one direction as in (c), an asymmetry to the clipping is created.

Each of these different versions provides different V-I curves as illustrated in Fig-

ure 3.2, which cause different distortion characteristics. More importantly they are
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D2
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−+Vi

Figure 3.1: Diode clipper circuits: (a) Single sided, (b) Symmetric and (c) Asymmet-

ric.

modelled using different equations, each are useful for explaining different aspects of

methods, and will be used in several examples in this thesis.

Given the Shockley diode model from (2.3), the three versions of the diode clipper

nonlinearity can each be modelled by

f(vn) = Is

(
e

vn
NVT − 1

)
− Is

(
e

−vn
αNVT − 1

)
(3.1)

where for the asymmetric diode clipper, α = 2, for the symmetric α = 1, and for the

single sided α =∞.

The asymmetric diode clipper is used in this chapter, with model parameters spec-

ified in Table 3.1. Although it is likely for each diode to have different values for Is, N

and Vt, they are set to be the same for simplicity as in this chapter the fit to a real circuit

is not the primary concern. Diode parameters are taken from the LTspice model of a

1N4148 diode. The model behaviour was validated against an equivalent simulation

from LTspice as illustrated in Figure 3.3.

3.1.2 Common-emitter amplifier

The common-emitter amplifier is commonly used in treble-booster guitar pedals, and

also forms a typical building block of analogue audio circuits. Illustrated in Figure 3.4,

the common-emitter amplifier is designed to boost the amplitude of the input voltage
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Figure 3.2: Diode clipper V -I curves for symmetric, asymmetric and single sided

versions. Is = 2.52 nA, N = 1.752, Vt = 25.83 mV.

Table 3.1: Parameter values for the asymmetric diode clipper used in the algorithm

comparison.

Parameter Value

R1 2.2 kΩ

C1 10 nF

Is 2.52 nA

N 1.752

Vt 25.8 mV
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Figure 3.3: Asymmetric diode clipper validation against SPICE, both processing a sine

wave with Vp = 2 V and frequency 1 kHz, with the Nodal-DK model simulated with

fs = 88.2 kHz.

−
+Vc

−+Vi

C1

R2

R1

R4

R3 C2

Ro

C3

+

−

Vo

Figure 3.4: Schematic of the common-emitter amplifier.

signal. Analysed from a linear perspective the circuit forms a third-order high-pass

filter due to the configuration of the three capacitors C1 - C3. If the BJT is driven at

a sufficient amplitude, the signal distorts both positive and negative voltages, though

with more complex distortion behaviour than that of the diode. The nonlinear equation

chosen here for use in the Nodal-DK method consists of the base and collector-current

equations of the Ebers-Moll model given in (2.5, 2.6):

f(vn) =

[
Ib(Veb, Vcb)

Ic(Veb, Vcb)

]
where vn =

[
Veb

Vec

]
, (3.2)

recalling that Vcb = Veb − Vec.

As with the diode clipper this circuit provides a useful case with which to explain

different techniques used throughout the thesis. The term ‘common-emitter amplifier’
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Table 3.2: Parameter values for the common-emitter amplifier used in the algorithm

comparison.

Parameter Value

R1 470 kΩ

R2 68 kΩ

R3 3.9 kΩ

R4 10 kΩ

Ro 1 MΩ

C1 4.7 nF

C2 47 µF

C3 10 nF

Is 10 fA

βf 200

βr 2

N 1

Vt 25.8 mV

refers to the general case, and a specific implementation from the ‘Dallas Rangemaster’

guitar pedal will be used in the case of vintage circuits. The Dallas Rangemaster used

a germanium BJT as opposed to a silicon BJT which is more commonplace today, the

difference between the two is discussed further in Chapter 4.

Parameters for the model used in this chapter can be found in Table 3.2. The model

behaviour was validated against LTspice, the results illustrated in Figure 3.5.

3.2 Root finding algorithms

As described in Section 2.1.2, the Nodal-DK method forms a set of nonlinear equations

of which the root must be found, written as a general function in (2.35). It is assumed

this equation is transcendental for which a closed-form solution does not exist, and is

therefore dependent upon an iterative root finding algorithm to find the solution. The

root of the function is defined by

g(vn) = 0. (3.3)

With floating point arithmetic it is unlikely to find a solution at which the function

evaluates to exactly zero. The finding of a solution requires convergence specifications,
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Figure 3.5: Common-emitter amplifier validation against SPICE, both processing a

sine wave with Vp = 200 mV and frequency 1 kHz, with the Nodal-DK model simu-

lated with fs = 176.4 kHz.

typically defined using the change in values of vn between iterations, i.e.

||vi+1
n − vin|| < VTOL (3.4)

where i indicates the current number of iterations and VTOL is the threshold value used

to determine convergence. If the magnitude of a solution is not known and a floating

point data type is used, a relative value of VTOL can be applied, RTOL = vin×VTOL.

This prevents the scenarios where the value of VTOL is smaller than the precision of

the data type used to represent the iterate. For the presented case studies solutions have

been found experimentally to fall within a predictable range, removing the necessity

of a relative tolerance.

To validate convergence the function can be evaluated at the given solution for

proximity to 0. Typically a maximum number of iterations ī is specified for algorithms

that have not achieved convergence within the given computational requirements. For

the demonstration of each method in this chapter VTOL = 1× 10−12 and ī = 100.

Numerous different algorithms can be employed to solve (3.3). In this section

there is an overview of notable algorithms and also the justification for their inclusion

or exclusion from the following analysis. Conditions for inclusion are:

• Ability to extend to multivariate nonlinearities;

• Ability to converge quickly.
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The ability to converge quickly is a relative metric for comparing root finding methods.

This relates to the convergence rate (e.g. quadratic, linear), but also the computation

required for each iteration.

3.2.1 Gradient based solvers

Newton’s method

Newton’s method forms the base of the root finding method comparison. In recent

literature it is frequently chosen for its good convergence properties and ability to

extend to multivariate nonlinearities e.g. [57]. A brief derivation of the method is

provided as many similar methods are considered for the comparison.

By forming a linear approximation to (3.3) at a given point a local, closed-form

solution can be found. Using the first two terms of the Taylor expansion around v̄n the

function is approximated using a linear model

g(vn) ≈ g(v̄n) + J(v̄n)(vn − v̄n), (3.5)

where J(v̄n) is the Jacobian (or derivative) matrix of g(vn). From (3.3), a local root

can be found by letting g(vn) = 0, leading to the Newton update equation

0 = g(v̄n) + J(v̄n)(vn − v̄n), (3.6)

vn = v̄n − J−1(v̄n)g(v̄n). (3.7)

This equation is solved iteratively, approximating successive roots of the function until

the local root is sufficiently close to the actual root of the function as defined by the

convergence criteria. The iterative behaviour becomes clear with a change of variables

vi+1
n = vin − J−1(vin)g(vin), (3.8)

where the point at which the approximation is formed v̄n now represents the current

iterate vin, and the local solution vn becomes the next iterate vi+1
n .

If the initial iterate v0
n is sufficiently close to the root v∗n, Newton’s method can be

shown to have q-quadratic convergence, i.e. the residual is roughly squared in the case

that the residual is less than 1 (but equivalent behaviour otherwise) [69].

One issue with Newton’s method is that it can overshoot the root, leading to the

next iterate being further away from the root. This behaviour is illustrated in Figure

3.6 and typically occurs if the curve has an ill-conditioned gradient. As the function

is scalar and convex, this overshoot can only occur once [70]. Given the limitations of
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Figure 3.6: Newton’s method solving the diode clipper nonlinearity. Overshoot of the

method is demonstrated. Each iteration is marked and the gradient followed to the

local solution/next iterate. The solution is found within the specified tolerance in 7

iterations.

the floating point representation, even one case of overshoot combined with the expo-

nential functions can cause the following iterate to exceed the maximum representable

value, in turn causing the algorithm to fail.

Damped Newton’s method

To avoid non-convergence additional conditions can be applied to Newton’s method.

The Armijo rule, referred to in VA literature as Damped Newton’s method [16], de-

scribes a line search implemented in the update equation calculation of Newton’s

method. Here problematic root-overshoot is defined by the inequality

||g
(
vin − J−1(vin)g(vin)

)
|| > ||g(vin)||, (3.9)

stating that the norm of the function at the next iterate is larger than that of the function

at the previous iterate. In the event that this inequality is satisfied, a scalar factor is

included in the update equation such that

vi+1
n = vin − 2−mJ−1(vin)g(vin), (3.10)

where the value of m is the smallest integer that satisfies the inequality [69]

||g
(
vin − 2−mJ−1(vin)g(vin)

)
|| ≤ ||g(vin)||. (3.11)
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Figure 3.7: Damped Newton’s method solving the diode clipper nonlinearity compared

to the first step of Newton’s method. Damped Newton’s method finds the solution

within the specified tolerance in 4 iterations.

To implement this in code a while loop is used which increments the integer value

of m from 1 until (3.11) is satisfied. The behaviour of this algorithm is illustrated

in Figure 3.7, where Damped Newton’s method is compared to Newton’s method on

the diode clipper nonlinearity. In the first iteration the step size is reduced by half,

dramatically reducing the overshoot. Using the same initial iterate as in Figure 3.6,

Damped Newton’s method only requires 4 iterations in comparison to the 7 of New-

ton’s method. As Damped Newton’s method is compatible with the multivariate case,

the improvement in convergence speed justifies inclusion in the algorithm comparison.

Due to the additional computation-costs of evaluating the function at each sub-iteration

it is possible that the method is less efficient than Newton’s method.

Chord method

The Chord method uses an approximation to the Jacobian to reduce the computational

cost of each iteration. The Jacobian is only evaluated at the initial iterate, the same

values are then used for each successive iteration. In the case of a well-conditioned

initial Jacobian and if v0
n is sufficiently close to v∗n the Chord method has q-linear

convergence [69]. In the case of a poorly chosen initial iterate with an ill-conditioned

Jacobian, the method is more prone to increase the residual for each successive itera-

tion without recovery. Both good and poor initial iterate cases are illustrated in Figure
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Figure 3.8: Chord method solving the diode clipper nonlinearity. (a) A poor initial

iterate, limited to 3 iterations for clarity. (b) A good initial iterate.

3.8.

Although the Chord method can exhibit poor robustness, by only evaluating the

Jacobian once the algorithm is very computationally efficient. For this reason the al-

gorithm is chosen for the comparison.

Secant method

The Secant method is equivalent to Newton’s method except that the Jacobian is cal-

culated using a difference equation. The method has been successfully implemented

in VA models for a circuit involving tube nonlinearities [71]. In multivariate cases

the Secant method becomes Broyden’s method, using a difference equation to find the

initial Jacobian and an efficient strategy of updating the Jacobian at successive iterates

[72]. In an initial investigation, Broyden’s method was found to be less robust than the

Chord method and so is omitted from the comparison.

Halley’s method

Using three terms from the Taylor series (where Newton’s method uses two) and solv-

ing for the next iterate reveals Halley’s method. For the univariate case this can be

expressed by [73]

vi+1
n = vn −

g(vin)

J(vin)− 1
2
H(vin) g(v

i
n)

J(vin)

(3.12)
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Figure 3.9: Bisection method solving the diode clipper nonlinearity. Intervals are

marked with iteration number. Iterations between 4 and 32 have been omitted for

clarity.

where H(vin) is the second derivative (or Hessian matrix in the case of multivariate

nonlinearities) of g(vin). Though the method extends to multivariate nonlinearities [74],

initial tests on the common-emitter amplifier revealed extremely poor convergence and

so the algorithm is omitted from the comparison.

3.2.2 Bisection method

A separate family of root-finding algorithms exists which do not utilise the gradient of

the function: bracketing methods. Here the bisection method is briefly discussed as a

representative example of a bracketing method though due to linear convergence the

algorithm is omitted from the comparison.

An interval is defined for which there must be a change of sign in between, i.e. for

the interval [vn1, vn2], sgn(g(vn1)) = −sgn(g(vn2)). With this condition satisfied, the

midpoint of the interval is found. The midpoint then replaces the original boundary

with the same sign such that the root is kept within the interval. This routine iterates

until the difference between interval boundaries is beneath a set tolerance [75].

Figure 3.9 illustrates an example case of the bisection method finding the root of

the diode clipper nonlinearity. For this case, 32 iterations were required to find the

solution. Due to the formulation of the algorithm reducing the initial interval size by

2 would only decrease the number of iterations by 1. As a result the convergence can
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be more predictable than that of a gradient-based solver, but due to the high number of

function evaluations the algorithm it is also likely to be computationally intensive.

3.2.3 Lambert W

Though the methods described in the previous section assume that there is no closed-

form solution to the nonlinear equation, one can be found using the Lambert W func-

tion for nonlinear equations that can be expressed by the form

W(z)eW(z) = z. (3.13)

For component models, the Lambert W function can represent the nonlinearity of a

diode [76] which has been used in a WDF model [14].

The Lambert W function can also be applied to the Nodal DK method. For a single

sided clipper as in Figure 3.1 (a), the Lambert W form can be found through algebraic

manipulation of (2.35) such that

W(z) = −Fn(f(vn)− IS)

NVT

, z = −FnIS

NVT

e
p+FnIs
NVT . (3.14)

Solving for f(vn) then yields

f(vn) = −NVT

Fn

W(z)− IS. (3.15)

A symmetric pair of diodes is presented in [14] using the knowledge that only one of

the diodes will be forward biased and so will dominate the behaviour of the clipper.

This is applied by testing for the polarity of the voltage to detect which diode is dom-

inant, and ignoring the effects of the diode in reverse-bias. For the Nodal-DK method

this is achieved by taking the absolute value of p and multiplying f(vn) by sgn(p) to

match the correct polarity.

The Lambert W has not been shown to extend to multiple dimensions, and for that

reason it is not compatible with the comparison requirements.

3.2.4 Homotopy

Homotopy describes a process of transitioning between a function with a known solu-

tion towards the function of which the solution is desired. Within the field, homotopy

has been applied generally to the Nodal-DK nonlinearity to improve the robustness of

Newton’s method when pre-solving the nonlinearity [27]. This approach used Newton

Homotopy as described in [77], where a new function is defined as

G(vin, ρ) = g(vin)− (1− ρ)g(v0
n) = 0, (3.16)
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using ρ to move from the known solution for ρ = 0 to the desired solution at ρ = 1.

Effectively an additional dimension of iteration is required: for each step in the value

of ρ the root-finding algorithm is run to find the solution which is then used for the next

value of ρ until the solution for ρ = 1 is found. The additional level of iteration leads

to a high computational expense which is not suitable for the real-time comparison,

but can be useful for other tasks.

Component models are not guaranteed to provide computable models over the full

possible range of parameter values, e.g. when N = 0 for the Shockley diode. As

parameters approach values that cause model-failure the root finding algorithm faces

more challenging scenarios. For this reason homotopy proves to be an excellent tool

in the process of retrieving component parameter values as it is able to solve models

over a greater range of parameter values than one of the discussed algorithms alone.

The following chapter focuses on parameter estimation which utilises physically-

informed homotopy. SPICE includes an additional, fictional conductance GMIN when

solving semiconductor nonlinearities to prevent zero conductances when the junction

is reverse-biased (i.e. the model becomes non-computable) [78]. The default value is

typically GMIN = 10e-12 which in parallel to a component will have little effect other

than to aid convergence. This can be modelled in the Nodal-DK method, for example

adding GMIN to the nonlinearity of the single-sided diode clipper

0 = p+ FnIs

(
e
vn
NVt − 1

)
− (1 + GMIN) vn. (3.17)

Consider the case in which convergence fails even with the inclusion of GMIN,

potentially due to an ill-conditioned gradient at the initial iterate. By increasing GMIN

the gradient becomes less ill-conditioned and the pn junction behaves more similarly

to a linear resistor.

Illustrated in Figure 3.10 are three choices of a parallel conductance with the diodes

in the asymmetric diode clipper. It is clear from the figure that the ill-conditioned

gradients in the centre of the illustrated range are transitioned towards well-conditioned

gradients by increasing the value of GMIN. By selecting a suitable set of values for

GMIN, a transition equivalent to homotopy between a resistor and the pn junction can

be achieved.
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Figure 3.10: Application of homotopy to diode clipper using parallel conductance

GMIN.

3.3 Deriving system knowledge to improve algorithm
performance

The algorithms described so far in this chapter all use features of the function that is

being solved: the gradient, the sign etc. Two adaptations are presented here that utilise

the form of nonlinearities that arise from the Nodal-DK method to improve robustness

and efficiency of (gradient based) root-finding algorithms.

3.3.1 Derivation from Nodal-DK

From (2.35) the Nodal-DK nonlinearity can be further decomposed into constant (p),

linear (gl), and nonlinear terms (gn),

gn(vn) = Fnf(vn), gl(vn) = −vn. (3.18)

Figure 3.11 illustrates this decomposition for the asymmetric diode clipper for p = 0.

The first method presented in this section utilises the gradient of each term to determine

a maximum step-size of a given gradient-based algorithm. The second method uses an

approximation to the nonlinearity to provide a strategic initial iterate.
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Figure 3.11: Decomposition of the diode clipper nonlinearity into linear and nonlinear

regions and their transition voltages V t.

Capped step

From the initial comparison between Newton’s method and Damped Newton’s method

in Figure 3.7 it is clear that Damped Newton’s method has desirable convergence prop-

erties. This comes at the cost of evaluating the nonlinear function once per sub-iteration

of the algorithm. One alternative that requires no in-loop function evaluations would

be a hard-limit to the step size of Newton’s method. For each element in vn a capped

step can be defined by the piecewise function

∆vn =

sgn(∆vn)V l, |∆vn| > V l

∆vn, |∆vn| ≤ V l
(3.19)

where V l is the limit to the step size ∆vn, which becomes ∆vn after capping. To

implement this approach a suitable step size must be found that may improve algorithm

robustness.

By treating each term separately (and setting p = 0), the decomposition in (3.18)

can be used to establish which term is dominant in different regions of the nonlinearity.

The gradient of each term is a possible metric to determine which term is dominant at

a given point, and so by finding the points that these gradients are equal provides

transitional points, i.e. for the univariate case

dgn

dvn

=
dgl

dvn

when vn = V t, (3.20)
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where V t is the transitional voltage. It is possible and even likely for there to exist

multiple values of V t for a given nonlinearity. The choice from these for the limiting

value is left for the user: for the algorithm implemented in this work one value is found

for each dimension, avoiding conditional statements for the selection of a limit within

the algorithm loop.

Capping the step size is compatible with each of the described algorithms that

operates on one point per iteration (as opposed to the interval used in the Bisection

method). As Newton’s method forms the baseline to which other adaptations have

been applied, it is a clear choice for which algorithm the capped step should also be

applied for the algorithm comparison.

Strategic initial iterate

A typical strategy for choosing an initial iterate for the nonlinear equation is to choose

the solution from the previous time-step. At low amplitudes/low frequencies this pro-

vides a reasonable estimate as the change in root is likely to be small. At high ampli-

tudes/high frequencies the distance between previous and current solutions increases

which increases the difficulty to converge to the new solution.

Instead a function could be defined that follows the curve of the nonlinearity, pro-

viding an initial iterate in close proximity to the root without the dependence of the

solution at the previous time-step. One such function can be determined through al-

gebraic manipulation of (3.18): by excluding the linear term, f(vn) can be inverted to

find an approximate root vni
n ,

0 = p + Fnf(v
ni
n )

Fn
−1(−p) = f(vni

n )

f−1(Fn
−1(−p)) = vni

n . (3.21)

This strategy is dependent upon f(vn) being invertible which is true for both the Shock-

ley diode and Ebers-Moll BJT models.

A strategic initial iterate is again compatible with each of the discussed algorithms

that operate on a single point of the nonlinearity. To maintain a fair comparison, the

new iterate is applied to Newton’s method for the algorithm comparison.

3.3.2 Asymmetric diode clipper system knowledge

As the diode clipper nonlinearity is combined from anti-parallel diodes, one direction

will always be dominant. Assuming that ex � e−x is true for the range of the nonlinear
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equation, an approximate nonlinearity can be derived from (3.1)

f(vn) ≈

Is

(
e
vn
NVt − 1

)
vn > 0

Is

(
e

−vn
2NVt − 1

)
, vn < 0

. (3.22)

Capped step

The approximation in (3.22) makes it possible to find two values for V t that satisfy

(3.20),
FnIs

NVt

e
V t

NVt = −1,
FnIs

2NVt

e
−V t

2NVt = −1, (3.23)

both points illustrated in Figure 3.11. From these two values the user may select one to

limit the Newton step, though only the magnitude is of interest i.e. V l = |V t|. In this

case the smaller of the two is chosen: for the diode clipper parameters given in Table

3.1, V l = 533.9 mV.

New iterate

Again using the approximation in (3.22), two solutions to (3.21) can be found for the

asymmetric diode clipper:

vni
n =


NVtlog

(
1− p

FnIs

)
, p ≥ 0

−2NVtlog
(

1 + p
FnIs

)
, p < 0

. (3.24)

For a given time-step first p is used to determine which expression to select.

3.3.3 Common-emitter system knowledge

New iterate

To find the inverted form of the Ebers-Moll model it must be decomposed into a matrix-

vector product, [
Ib

Ic

]
= Is

[
1
βf

1
βr

1 −βr+1
βr

]e
Veb
NVt − 1

e
Vcb
NVt − 1

 . (3.25)

The simplified Nodal-DK nonlinearity can then be solved for the exponential terms,

such that

−Q−1p =

 e
V ni
eb

NVt − 1

e
V ni
eb−V ni

ec
NVt − 1

 , where Q = FnIs

[
1
βf

1
βr

1 −βr+1
βr

]
. (3.26)
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The voltages used in the Ebers-Moll model have been transformed to ensure they match

with those used in the Nodal-DK nonlinearity. Final element-wise operations yield the

expressions of the new iterate,

vni
n =

V ni
eb

V ni
ec

 =

NVTlog
(
1− p̂1

)
NVTlog

(
1−p̂1
1−p̂2

)
 (3.27)

where p̂ = Q−1p.

Capped step

As noted previously, the Nodal-DK nonlinearity defined in (3.2) has the Ebers-Moll

model using a different set of voltages to those contained in vn. To simplify the pro-

cess of determining values for V t, the voltages used for the Nodal DK-method are

transformed to match those of the Ebers-Moll model.

v̂n =

[
Veb

Vcb

]
=

[
1 0

1 −1

]
vn, (3.28)

leading to the transformed gradient comparison,

∂gn

∂v̂n

=
∂gl

∂v̂n

, (3.29)[
−1 0

−1 1

]
=

1

NVt

Q

e
V t
eb

NVt 0

0 e
V t
cb

NVt

 . (3.30)

Element-wise evaluation of this comparison yields three expressions for V t. Two of

these are for Veb,

V t
eb = NVtlog

(
−NVt

Q11

)
and V t

eb = NVtlog

(
−NVt

Q21

)
, (3.31)

from which as with the diode clipper the smallest value is selected. For Vcb one ex-

pression is found,

V t
cb = NVtlog

(
NVt

Q22

)
. (3.32)

To transform V t
cb back to V t

ec, the expression is evaluated at Veb = 0, i.e. V l
ec =| −V t

cb |.

3.4 Method comparison

With both the discussed existing algorithms and presented adaptations using informa-

tion derived from the Nodal-DK method 5 methods have been selected for comparison:
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Table 3.3: Cost of mathematical operations as defined by the Lightspeed Toolbox [79].

Operation Cost

+, −, × 1

logical, relational, branch 2

abs() 4

sgn() 5

÷ 8

exp() 40

||x||2 2M + 7

Solve using LU M3 + 1
2
M2 + 29

2
M − 8

1. Newton’s method;

2. Damped Newton’s method;

3. Chord method;

4. Newton’s method with a strategic initial iterate;

5. Newton’s method with a capped step size.

The three existing algorithms form a range of anticipated robustness from poor (Chord)

to excellent (Damped Newton’s) with which to compare the algorithms informed from

the Nodal DK method. To evaluate the performance of each algorithm first a set of

metrics must be determined.

3.4.1 Comparison metrics

While the obvious common metric of performance for each of the selected methods is

the number of iterations required to converge, this metric does not account for the dif-

ference between the algorithms’ computational-cost of each iteration. This motivates

the selection of floating point operations (FLOPs) which can be easily evaluated with

the help of definitions from the Lightspeed MATLAB toolbox [79]. The data type of

each variable used is assumed to be floating point for simplicity though real algorithms

will likely utilise multiple data types. The cost of each operation is displayed in Table

3.3. Branch operations (as they appear in e.g. if, while) were given the same cost

as logical and relational operators.
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Table 3.4: Cost in operations of constant values for both diode clipper and common-

emitter amplifier models.

Variable Description Diode Clipper Common-emitter

Clim Step limit calculation cost 32 124

Citer Strategic iterate calculation cost 37 130

Cf Cost of function evaluation 105 234

Cj Cost of Jacobian evaluation 121 359

Table 3.5: Model-specific cost in operations for the computation required for one iter-

ation and the initial computation of each method.

Diode Clipper Common-emitter

Method Initial Iterate Initial Iterate

Newton 234 253 624 646

Damped 234 261 + 117is 624 658 + 252is

Chord 234 132 624 287

New It. 271 253 754 646

Capped 287 274 790 688

Using the values and expressions from Table 3.3, the cost of each method is de-

termined based upon the number of dimensions of the nonlinearity M and the number

of iterations required to satisfy the convergence condition i. Additionally, the Damped

Newton method requires sub-iterations denoted by is. The costs of calls to the function

and Jacobian are represented by Cf and Cj respectively. Clim and Citer represent the

initial cost of calculating the transitional voltages and the approximate initial iterate.

These values are found at each time step, assuming that the model is continuously

updated due to audio rate parametric control.

The cost of each method is denoted using subscript: CN for Newton’s method; CD

for Damped Newton’s method; CC for the Chord method; CCS for Newton’s method
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with the capped step applied; and CNI for Newton’s method with the new initial iterate.

CN = M3 +
1

2
M2 +

29

2
M + Cj + Cf − 8

+ i

(
M3 +

1

2
M2 +

35

2
M + Cj + Cf + 8

) (3.33)

CD = M3 +
1

2
M2 +

29

2
M + Cj + Cf − 8

+ i

(
M3 +

1

2
M2 +

43

2
M + Cj + Cf + 12

)
+ is

(
6M + Cf + 6

) (3.34)

CC = M3 +
1

2
M2 +

29

2
M + Cj + Cf − 8

+ i

(
M3 +

1

2
M2 +

35

2
M + Cf + 8

) (3.35)

CCS = CN + 21M + 21iM + Clim (3.36)

CNI = CN + Citer (3.37)

Table 3.4 contains the cost of constant values for both the diode clipper and the common-

emitter models. Using this information, values were obtained for the cost of an iter-

ation and the initial computation for each algorithm. These are displayed in Table

3.5.

In addition to the conversion from iterations to operations, a moving average filter

is applied to the results to simulate the effect of a 2 ms audio buffer and how it may

process blocks at a time which would smooth the computational load. To illustrate

the effects on the iterations/operations, Figure 3.12 shows the unfiltered and filtered

iterations of the common-emitter amplifier processing a 30 ms Hann windowed sine

wave at 1 kHz. The signal is simulated at 2× oversampling and solved using Newton’s

method.

3.4.2 Results

Test simulations were designed to compare the performance of each method against

two factors: the amount of oversampling applied, and the peak voltage of the input.

Oversampling is compared to test how efficient each method is on computational sys-

tems with different processing capabilities.
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Figure 3.12: Input/Output and iteration count of a 1 kHz, 200 mV sine wave modulated

by a hann window processed by the common-emitter Nodal-DK model using Newton’s

method, fs = 88.2 kHz. Unfiltered and moving average filter results shown, and

maximum values marked with �.

A 30 period, 1 kHz sine wave was used to drive the models. The sine wave was

modulated by a Hann window so that the amplitude varied across the range of the

nonlinearity. For both circuits, the peak voltage of the input was chosen to match

what can be expected from a real circuit. As a diode clipper is typically situated after

amplification, the highest peak voltage was set at 9 V, which presumes the system

uses a dual-rail ±9 V power supply. To set a voltage range for the common-emitter

amplifier it was placed immediately after a guitar as would be the Dallas Rangemaster

guitar pedal, so the input reflects a guitar’s output. For this reason a representative

maximum peak voltage was set at 300 mV, although it is noted guitar output voltages

can exceed this. The power supply voltage for the common-emitter amplifier model,

Vc was set to 9 V.

To ensure a fair comparison, the parameters of the root finding methods were set

constant between models and methods, VTOL = 10−12 and ī = 100. Observed

inefficiency of Damped Newton’s method was corrected by limiting the number of

sub-iterations to 3.

Table 3.6 shows results of a set of 16 simulations. Both maximum iteration and

operation counts are provided, for which a filtered version and unfiltered version are

displayed. Figures 3.13 and 3.14 illustrate the performance of the diode clipper and

common-emitter amplifier over a range of amplitudes with no oversampling.
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Figure 3.13: Maximum operations against peak input voltage for the asymmetric diode

clipper. (Top) Peak averaged operation costs, (Bottom) Peak operation costs.

The most notable result from these simulations is that both Chord and Newton’s

methods exhibit non-convergent behaviour in a variety of tests in which the other three

methods are convergent. Of these remaining methods, each has cases in which it is the

most efficient.

One exclusive feature is the uniform behaviour of Newton’s method with a strategic

initial iterate. This is clearly observable in Table 3.6 from the consistent behaviour

relative to sampling frequency, with the maximum variation of 1 iteration (peak) for the

case of the common-emitter amplifier with a peak voltage of 300mV. Figure 3.13 and

3.14 confirm this behaviour relative to input voltage, although with higher variance.

3.5 Conclusion

Two root-finding algorithms were presented using system derived knowledge to im-

prove robustness. Both methods were compared to three existing root-finding algo-
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Figure 3.14: Maximum operations against peak input voltage for the common-emitter

amplifier. (Top) Peak averaged operation costs, (Bottom) Peak operation costs.
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rithms that cover a range of expense/robustness. The results indicate that for cases of

moderate peak voltage and higher sampling frequency, Newton’s method is sufficiently

robust and relatively efficient. However, for more challenging cases (i.e. cases of high

peak voltage and/or low sampling frequency), Newton’s method was found to be non-

convergent. In principle this can be addressed by using Damped Newton’s method,

although for several tests it proved to be less efficient than both proposed methods.

3.5.1 Limitations and succeeding work

Utilising predictable behaviour

At the time of publication one avenue of future research was into the removal of the

while loops from the iterative algorithm. The condition enforced by the while loop

means that the computer must wait until the end of the loop before knowing what

code will be executed next. Modern computer developments enable optimisations to

be performed if the program flow is predictable [80].

Newton’s method with the new initial iterate exhibited predictable behaviour with

a clear limit of iterations over the examined range of operation. Replacing the while

loop with a for loop set to perform the maximum observed number of iterations would

enable the computer to know the exact programme flow instead of checking the conver-

gence condition each iteration. It was hypothesised that the optimisations a compiler

could make knowing the exact program flow could outweigh the additional cost of con-

sistently computing the maximum number of iterations. Upon investigation in a C++

programme compiled with maximum speed optimisation (-O3), the for loop approach

was found to be consistently more expensive than the original while loop algorithm.

Circuits with more complex nonlinearities

A key aspect of the proposed iterative methods is that they rely on the availability of an

analytic inverse of either the nonlinear term of the equation to be solved for or its first

derivative. This criterion is usually satisfied since the components in distortion circuits

are often modelled with monotone analytical functions. Even if this holds, to determine

the expressions of the capped step and strategic initial iterate several assumptions had

to be made about the component behaviour. Should these assumptions break down it

may occur that the methods either do not produce closed form expressions for the tran-

sitions and initial iterates, or that the obtained values provide no additional robustness

or computational efficiency. Hence a further interesting research direction to explore
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in future research is to test the methodology on different circuits and more complex

component models.

One foray was attempted on this topic, investigating the application of the strategic

initial iterate to the Fuzz Face circuit (a circuit description is provided in Chapter 4).

Due to the configuration of the two BJTs being connected, the resulting nonlinearity

did not work successfully with the proposed strategy of finding a new iterate. The

position of the strategic initial iterate causes the Jacobian to become singular within

the limitations of the computational system. This scenario could be encountered when

Newton’s method using the previous solution as the initial iterate would converge,

indicating that the strategic initial iterate does not always provide a robust choice.

Succeeding work

Since the publication of [81] other approaches have been presented, most notably a

similar comparison has been performed for WDF [48]. Similar to the Damped New-

ton’s method algorithm, ‘Newton’s method with backtracking’ is coined which imple-

ments a line search approach while testing the residual of the next iterate. Additionally

a Steepest Descent [75] algorithm is used to find an initial iterate, resulting in signifi-

cantly reduced iteration counts.
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Chapter 4

Bipolar Junction Transistor modelling
for Virtual Analogue

Bipolar Junction Transistors (BJTs) are one of the most ubiquitous nonlinear compo-

nents and are used in a large number of guitar pedals and amplifiers. It is therefore use-

ful to have available several BJT models with known strengths from which to choose

the most suitable for a given VA circuit model.

The aim of this chapter is to compare a set of nonlinear BJT models in the context

of VA circuit models. The baseline of this comparison is the Ebers-Moll model which

has already been used extensively in the literature, for example [16, 28, 17]. Since the

original Ebers-Moll model was published in 1954 [82] several extensions to the model

have been published, notable cases including – in both chronological order and increas-

ing levels of complexity – the Gummel-Poon [83], VBIC [84], and MEXTRAM [85]

models. None of the additional effects included in these models has been investigated

for use in VA. Here the Ebers-Moll model is extended with additional effects from the

Gummel-Poon model resulting in three comparable models.

Note that if a simpler but still nonlinear model is suitable it is often the case that the

model will depend on surrounding circuitry so cannot be examined individually. One

case of this is the long-tailed pair which is modelled as a single nonlinearity in models

of the Moog ladder filter, e.g. [71].

Nonlinear components such as the BJT are typically the most complex components

in a circuit model, and as such if error is found between a circuit and its model these

components are a likely source of error. A second primary aim arises from this: to find

a strategy of extracting model parameters from measurements of a BJT, creating com-

ponent models as close as possible to real devices to reduce the error in circuit models

that use said devices. Isolating the component from the surrounding circuit enables
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specific measurements to be performed which are designed for extracting parameters,

the objective being to provide more confidence in resultant values.

An interesting challenge is found in germanium BJTs, a semiconductor material

that pre-dates the used of silicon and has been used in numerous vintage effects. Due

to the lower manufacturing quality when these BJTs were first made and the use of a

different semiconductor material there is potentially more uncharacterised behaviour

which would present increased difficulty when fitting models to measurements.

Finally, using the BJT models with extracted parameter values a comparison of VA

models is performed: two case study circuits are used to compare the change in model

response and computation time. The case studies selected are the Dallas Rangemaster

Treble Booster and Arbiter Fuzz Face, both of which originally used germanium BJTs.

4.1 Germanium Bipolar Junction Transistors and cir-
cuits

The case studies for this chapter were chosen using two conditions: they must feature

one or more BJTs which largely define their behaviour, and the BJTs used must be

germanium. This section provides background information on the effects, their design,

and which BJT was used.

4.1.1 Dallas Rangemaster Treble Booster

The Dallas Rangemaster Treble Booster is a guitar pedal designed in London circa

1966, and was made famous by guitarists such as Eric Clapton and Jimmy Page [86].

The circuit was designed to sit atop an amplifier, boosting the input signal to cause ad-

ditional distortion from the amplifier input. The circuit is a common-emitter amplifier

as illustrated in Figure 3.4 with the same parameters as in Table 3.2 except for the BJT

parameters which will be extracted from measurements. Several BJTs were used in the

circuit over the period that the pedal was manufactured, for the analysis in this chapter

the OC44 was selected to investigate, its data sheet shown in Appendix A.

One notable difference that is present in the circuit modelled in this chapter as op-

posed to the circuit in Chapter 3 is that an impedance is placed in series with the input

voltage source, illustrated in Figure 4.1. This modification introduces a new signal

that drives the circuit V̄i, which after the input impedance Ri becomes the original in-

put signal Vi. This is applied to both case studies in this chapter to approximate the

impedance of a guitar pickup.

55



Chapter 4. Bipolar Junction Transistor modelling for Virtual Analogue
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Figure 4.1: Schematic representation of the additional input impedance added to each

circuit model to simulate a guitar pickup.
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Figure 4.2: Schematic of the Fuzz face circuit.

4.1.2 Arbiter Fuzz Face

The Arbiter Fuzz Face was designed by Ivor Arbiter, again in London circa 1966. It is

best known for its use on Jimi Hendrix’ 1967 album Are You Experienced [87]. Illus-

trated in Figure 4.2, the Fuzz Face uses two BJTs which form a low component-count

Schmitt trigger, typically making the output resemble a square wave. The potentiome-

ter Rf , labelled ‘Fuzz’, controls feedback from the second BJT stage to the first, filter-

ing the signal with an lowpass created by C1. The second potentiometer Rv labelled

‘volume’ forms a potential divider to ground, controlling the amplitude of the output

signal.

As with the Rangemaster, several BJTs were used in the pedal. For this analysis the

AC128 has been chosen to remain consistent with previous modelling literature [16],

the data sheet can be found in Appendix B. The specific circuit shown in Figure 4.2

was traced from the PCB of a recent iteration of the germanium Fuzz-Face from Jim

Dunlop pedals. The parameters for the circuit are shown in Table
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Table 4.1: Parameter values for the Fuzz Face circuit shown in Figure 4.2.

Parameter Value

R1 11 kΩ

R2 680 kΩ

R3 62 kΩ

R4 36 kΩ

Rf 1 kΩ

Rv 500 kΩ

C1 22 µF

C2 0.1 µF

C3 2.2 µF

C5 6.8 nF

Table 4.2: BJT regions of operation as defined by junction bias.

Vcb < 0 Vcb > 0

Veb > 0 Forward active Saturation

Veb < 0 Cutoff Reverse active

4.2 BJT configurations for direct measurement

To discuss the effects of extending the Ebers-Moll model it is useful to first define

the measurement configurations that will be used to characterise each BJT. Four key

regions of operation exist for the BJT depending on the junction bias, as shown in Table

4.2 [88]. Of these four states, three are useful in the characterisation strategy presented

in this chapter for which three measurement configurations are chosen. A BJT biased

in the cutoff regions behaves like an open switch, providing little information about

the overall behaviour.

Each of the three selected measurement configurations are illustrated in Figure 4.3:

• Forward Gummel: a measurement of the forward active region, Vec is held posi-

tive while Veb is swept and the currents are measured.

• Reverse Gummel: a measurement of the reverse active region similar to the

Forward-Gummel but instead Vec is held negative while Vcb is swept.
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Figure 4.3: Measurement configurations for parameter extraction: (a) forward Gum-

mel, (b) reverse Gummel, (c) common-emitter characteristic.

• Common-emitter characteristic: a measurement of the output characteristic, con-

taining both active regions and the transition through the saturation region. The

base terminal is driven with a current source and Vec is swept while Ic is mea-

sured.

The simulated currents of the Ebers-Moll model for each configuration are illustrated

in Figure 4.4. From the measured equivalent of this data the parameter values of the de-

sired models will be extracted. Many additional measurement configurations exist that

are designed to extract specific parameters. The three selected configurations largely

expose the parameters to be extracted, as will be shown in the following sections.

4.2.1 Silicon vs Germanium BJT comparison

Figure 4.5 shows initial forward Gummel measurements of the OC44, AC128, and

2N3906 BJTs. The 2N3906 is a generic silicon BJT, and though it is not representative

of all silicon BJTs it provides a useful point of comparison.

Recalling the ideal behaviour of a BJT as defined by the Ebers-Moll model and ex-

hibited in Figure 4.4, the 2N3906 BJT exhibits similar behaviour in the middle region

of the plot, as can be seen for 300 mV < Veb < 700 mV. These ‘ideal’ regions are

smaller for the OC44 and AC128, closer to 0 mV < Veb < 150 mV, indicating that

there may be more demand of additional model complexity for the germanium BJTs.

It must be noted while these measurements allow for comparison between BJTs,

they are not suitable for characterisation as they are not sufficiently biased in the

forward-active region to isolate the forward-active behaviour.
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Figure 4.4: Resulting data of measurement configurations modelled with Ebers-Moll:

(a) forward Gummel, Vec = 3 V, (b) reverse Gummel, Vec = −3 V, (c) common-

emitter where Ib = 1 µA, 2 µA, 3 µA. Model parameters are set as Is = 1 pA, βf =

300, βr = 10, Nf = Nr = 1, Vt = 25.8 mV.
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Figure 4.5: Forward Gummel plots of the OC44, AC128 and 2N3906 BJTs measured

at Vec = 300 mV.
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c

Ibc
b

e

Ibe

Icc

Figure 4.6: Schematic representation of the current source configuration of a PNP BJT.

4.3 Extension of the Ebers-Moll model

To determine whether a more complex BJT will make a significant difference to the

output of a VA model first a set of comparable models must be defined. The Ebers-

Moll model forms the baseline with which to compare more complex models. Addi-

tional models are extensions of the Ebers-Moll including additional effects based on

the Gummel-Poon model [83]. The primary focus of the modelling is on DC effects:

the first extended model uses additional terms to fit the high and low current regions, as

well as to fit the change in gain with respect to Vec. A third and final model is created

by adding junction capacitances, but extraction is not performed on these parameters.

Throughout the derivation of the extended models repeat references are omitted

as the extensions stem from the same reference [83]. Those seeking a more in-depth

explanation of the additional effects may refer to [89].

4.3.1 Ebers-Moll revisited

Decomposing the Ebers-Moll model into contributing terms enables an intuitive ex-

tension of DC behaviour. The model can be written as a weighted sum of two diodes,

beginning with forward and reverse diode terms

If = Is

(
e
Veb
NfVt − 1

)
, Ir = Is

(
e
Vcb
NrVt − 1

)
. (4.1)

Note that the definition in (2.5, 2.6) only uses one term for the ideality factor N , which

has been separated into individual forward and reverse parameters Nf and Nr for im-

proved versatility in this chapter. The diode terms are combined to form what can be
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interpreted as VCCSs connected as illustrated in Figure 4.6. Directional notation for

the current terms (e.g. bc, base-collector) is chosen to match existing literature that

typically refers to NPN BJTs. Three sources are defined as

Icc = If − Ir, Ibe =
1

βf

If , Ibc =
1

βr

Ir. (4.2)

Finally, the current entering/exiting each terminal is found by examining the contribu-

tions of each current source,

Ic = Icc − Ibc, Ib = Ibe + Ibc, Ie = −(Icc + Ibe). (4.3)

Figure 4.7 shows the forward and reverse Gummel plots of the Ebers-Moll model

and how each model parameter is defined assuming ideal behaviour from the BJT.

Saturation current can be extracted using one of two equivalent equations depending

on whether the BJT is forward or reverse biased. When forward biased,

Is ≈ Ic = −Is
βr + 1

βr

(
e
Vec
NrVt − 1

)
, Vec � 0, (4.4)

and when reverse biased,

Is ≈ Ie = Is
βf + 1

βf

(
e

−Vec
NfVt − 1

)
, Vec � 0. (4.5)

These approximations approach the true value of Is as βf and βr approach infinity, and

Vec approaches positive/negative infinity depending on the BJT bias.

Current gains βf and βr can be found from constraining the model to their respective

active region and finding the relationship between currents, i.e. βf = Ic/Ib, βr = Ie/Ib.

Ideality factors Nf and Nr define the semi-logarithmic gradient of the Gummel

plots, dlog(Ic)/dVeb = 1/NfVt. To isolate Nf and Nr the temperature of the junction

must be measured to find Vt from (2.4).

4.3.2 Early effect

The Early effect describes a dependence of Ic on Vec. This requires the addition of

two parameters – the forward and reverse Early voltages Vaf and Var – to model the

dependency when Vec is both positive and negative. The Early voltages are where

Ic = 0 when the curves of the common-emitter characteristic are extrapolated from the

active regions. Icc is adapted from (4.2) to include the Early effect with a new term q1,

Icc = q−1
1 (If − Ir) , q−1

1 = 1− Veb

Var

− Vcb

Vaf

, (4.6)
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Figure 4.7: (a) Forward and (b) reverse Gummel plots of the Ebers-Moll model. Pa-

rameter values are the same as in Figure 4.4.

which simplifies to the Ebers-Moll model when q1 = 1, i.e. Vaf = Var = ∞. The

Early effect can most clearly be seen on the common-emitter characteristic, illustrated

in Figure 4.8. Assuming that the BJT is in forward or reverse active regions, q1 can

be simplified to better indicate how the Early effect depends on Vec. For the forward

active region, using Vcb = Veb − Vec and assuming Veb � Vaf and Veb � Var,

q−1
1 = 1− Veb

(
1

Var

+
1

Vaf

)
+
Vec

Vaf

≈ 1 +
Vec

Vaf

. (4.7)

The same approximation can be found for the reverse active region substituting Veb =

Vcb + Vec and assuming Vcb � Vaf and Vcb � Var,

q−1
1 = 1− Vcb

(
1

Var

− 1

Vaf

)
− Vec

Var

≈ 1− Vec

Var

. (4.8)

4.3.3 Internal high and low current behaviour

The behaviour of the BJT illustrated on the forward and reverse Gummel plots typically

deviates from exponential in two places: high and low currents. This section describes

the extended ‘internal’ behaviour used to describe the high and low current behaviour,

i.e. the additional terms added to the current sources of Figure 4.6. Further high current

behaviour is added with the inclusion of external resistances, discussed in the next

section.
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Figure 4.8: Common-emitter characteristic demonstrating the the Early effect. Ib =

1 µA, 2 µA, 3 µA. Ebers-Moll parameter values are the same as in Figure 4.4.

Icc is extended again from (4.2) to include the term q2 which models the forward

and reverse knee currents Ikf and Ikr,

Icc =
2

1 +
√

1 + 4q2

(If − Ir) , q2 =
If

Ikf

+
Ir

Ikr

. (4.9)

When q2 = 0 (i.e. Ikf = Ikr = ∞) the extension simplifies to the Ebers-Moll model.

When Ikf > 0, Ic and βf are reduced at high currents of the forward active region, and

equivalently for the reverse active region with Ie and βr when Ikr > 0.

Low current deviation is modelled by additional exponential terms in Ibe and Ibc,

extended from (4.2),

Ibe =
1

βf

If + Ise

(
e
Veb
NeVt − 1

)
, (4.10)

Ibc =
1

βr

Ir + Isc

(
e
Vcb
NcVt − 1

)
. (4.11)

Four new parameters are defined: Ise, Isc are the leakage saturation currents, and their

corresponding leakage coefficientsNe andNc. The additional exponential terms define

a second (semi-logarithmic) line segment.

Figure 4.9 shows the Gummel plots of the Ebers-Moll model with additional high

and low current terms. The dashed line indicates the original Ebers-Moll model and

the solid line the extended model.
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Figure 4.9: (a) Forward and (b) reverse Gummel plots illustrating the difference caused

by including the parameters Ikf = 1 mA and Ikr = 1 mA for the high-current region,

and Ise = 10 pA, Isc = 10 pA, Nc = 3 and Ne = 3 for the low-current region. Dashed

lines mark Ebers-Moll model, using the same parameter values as in Figure 4.4, and

solid line the extended model.

4.3.4 Terminal resistances

Terminals and leads of a BJT have an inherent impedance to the flow of current which

can be modelled using linear resistors as illustrated in Figure 4.12. The base resistance

Rb has the largest effect on the high-current region of the forward Gummel plot while

the emitter resistance Re effects the reverse Gummel plot, the effect of both can be

seen in Figure 4.11. Collector resistance Rc controls the transition from the saturation

region as illustrated in Figure 4.10. The larger the value of Rc the larger the value of

Vec must be to forward bias the collector-base junction.

Terminal resistances are not explicitly added to the BJT model but instead are con-

nected between the internal BJT model and external components when implemented

in a circuit model. This also applies to the junction capacitances.

4.3.5 Junction capacitance

In addition to the terminal resistances, Figure 4.12 shows two junction capacitances

Ceb and Ccb. Measuring of dynamic effects requires a significantly different measure-

ment strategy which was not possible with the available equipment. Therefore nominal

values are taken from component datasheets given in Table 4.3, provided with specified
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Figure 4.10: Common-emitter characteristic demonstrating the effects of collector ter-

minal resistance Rc = 100 Ω.
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Figure 4.11: (a) Forward and (b) reverse Gummel plots illustrating the difference

caused by including the parameters Rb = 100 Ω and Re = 10 Ω. Dashed lines mark

the Ebers-Moll model and solid lines the extended model.
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Table 4.3: BJT capacitance values and measurement details given by their datasheets.

BJT Specification Ccb Ceb

OC44 Vec = 6 V, Ic = 1 mA 10.5 pF 410 pF

AC128 Vcb = −5 V, Ie = 0 A 100 pF -

Rb

b

Rc

c

Re

e

Ccb

Ceb

Figure 4.12: Schematic representation of the additional components added to the in-

ternal BJT model.

measurement details.

The effect of the capacitances depends upon the configuration of the BJT in the

circuit. Figure 4.13 shows the transfer functions of the Dallas Rangemaster circuit

with and without junction capacitances. By including these effects the high frequency

gain has been reduced by approximately 2 dB.

For certain BJT amplifier configurations the Miller effect will also increase the

effective value of the relevant junction capacitance [90], notably Ccb for the common-

emitter amplifier. Although not modelled in this study it is important to note this effect

to qualify the accuracy of the given capacitances.

4.3.6 Compared models

Two extensions to the Ebers-Moll model are defined for the comparison: the DC and

AC Gummel-Poon models. While these models are denoted by ‘Gummel-Poon’ they

do not include each term from the original publication [83], but more closely resem-

ble that model than the Ebers-Moll. The internal DC Gummel-Poon model can be
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Figure 4.13: Transfer function of the Dallas Rangemaster with and without junction

capacitances.

expressed by the three VCCS terms:

Icc =
2

q1(1 +
√

1 + 4q2)
(If − Ir) , (4.12)

Ibe =
1

βf

If + Ise

(
e
Veb
NeVt − 1

)
, (4.13)

Ibc =
1

βr

Ir + Isc

(
e
Vcb
NcVt − 1

)
. (4.14)

The complete DC Gummel-Poon model is defined by (4.12 - 4.14) and the terminal

resistances. By further including the junction capacitances the AC Gummel-Poon is

defined.

4.4 Parameter extraction of Bipolar Junction Transis-
tors

The proposed BJT parameter extraction strategy is a hybrid direct extraction and op-

timisation approach based upon two exisiting strategies [91, 8]. As both were im-

plemented in closed-source commercial software a new approach was created using

similar design principles: to initialise optimisation using directly extracted parame-

ter values, and to utilise targeted optimisation stages focussing on reduced groups of

parameters.
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Table 4.4: Ranges of the inputs to each measurement circuit. Specific values of Ib are

provided on each measurement plot.

Meaurement Input OC44 AC128

Forward Veb 0 - 0.7 V 0 - 0.8 V

Gummel Vec 2 V 2 V

Reverse Vcb 0 - 0.8 V 0 - 0.8 V

Gummel Vec –2 V –2 V

Common Ib 3 - 50 µA 26 - 1000 µA

Emitter Vec –5 - 5 V –5 - 5 V

4.4.1 Measurement details

Measurements were taken using a Keithley 2602B Source Measure Unit (SMU). SMUs

are measurement instruments designed for static, DC measurements of devices and are

capable of sourcing a voltage or current whilst simultaneously measuring the remain-

ing quantity, e.g. drive a current and measure the voltage.

In total 7 BJTs were measured: 3 OC44 and 4 AC128. Measurements were pulsed

to minimise the amount of time the BJT was driven and therefore reduce the change

in temperature across measurements. Limits to the measurements – specified in Table

4.4 – were found through setting current limits as noted by the data sheets and finding

a maximal voltage that would prevent the SMU from hitting said limit for each BJT.

4.4.2 Direct extraction

Direct extraction of model parameter values is used to find a set with which to initialise

the optimisation. Not every parameter requires direct extraction: for this method only

Is, Nf , Nr, βf , βr, Ikf , and Ikr are extracted. A quick manual tuning of the remain-

ing parameters provides initial values that offer a reasonable fit to the three measured

characteristics. Extraction procedures were developed from [91].

First Vt must be calculated using (2.4). The temperature TK represents the tem-

perature of the pn junctions which approaches ambient when the BJT is not driven.

A measurement of ambient room temperature can therefore be used for the calcula-

tion of Vt so long as the junction is not driven for extended periods and is allowed a

period of time to return to ambient temperature. Room temperature was measured at

TK = 296.45 K meaning Vt = 25.5 mV.

68



Chapter 4. Bipolar Junction Transistor modelling for Virtual Analogue

With a value for Vt, values forNf andNr can be found. As previously stated, 1/NVt

is the semi-logarithmic gradient of the Gummel plots. As the gradient of the currents

in the Gummel plots change with respect to voltage a suitable measurement point must

be selected. The point must be in the ideal region as the extracted parameters belong

to the Ebers-Moll model. Using the knowledge from the extended Ebers-Moll model

behaviour, we know that the gradient decreases with high-current effects and low-

current effects. It then follows that the gradient of the ideal region is the maximum

of the curve. Figure 4.14 shows an example gradient curve of Ic in the forward active

region, with the extracted gradient value marked with a dashed line.

At this same voltage a value for Is can be extracted. As Ic and Ie deviate from the

ideal exponentials in real devices, instead of following both curves to their intercept,

an exponential approximation is made in the ideal region, e.g. for the forward Gummel

plot,

Ic = Is e
Veb
NfVt , Is = Ic e

− Veb
NfVt . (4.15)

Gain parameters use a different point in the measurement to extract a value from:

the maximum of the current ratios. The gain extraction point is illustrated for the

forward Gummel plot in Figure 4.15. This selection again follows from the logic

that the maximal gain of the BJT will be where low- and high-current effects are not

reducing its value. Though different extraction points are used for different Ebers-Moll

parameters, the extracted values are only used to seed the optimisation process: final

parameter values will have been optimised to best fit the measured behaviour of the

BJT.

Finally, values for Ikf and Ikr are found by inspecting the current ratios and finding

the values of Ic and Ie at which the ratios are half of extracted current gains, i.e.

Ikf = Ic where
Ic

Ib

=
1

2
βf , (4.16)

Ikr = Ie where
Ie

Ib

=
1

2
βr. (4.17)

Should the current ratio not fall to half of the extracted value of β, the measurement

can be extrapolated to find this point.

4.4.3 Extraction using optimisation

To improve the fit of the BJT models with extracted and manually tuned parameters a

set of targeted optimisations are performed. An error function is defined,

ε(θb, y) =
1

N

N∑
n=1

(
y(n)− ŷ(θb, n)

y(n)

)2

, (4.18)
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Figure 4.14: A example plot of dlog(Ic)
dVeb

illustrating at which point extraction is per-

formed for Nf .
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Figure 4.15: An example plot of the ratio Ic/Ib indicating how the gain of the BJT

changes with respect to Veb and at which point βf and Ikf are extracted.
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Table 4.5: Voltage ranges over which each optimisation for both models were per-

formed. Gummel plots were used in both the penultimate and ultimate stages for the

Gummel-Poon model, and are labelled 1 and 2 to differentiate.

Model Measurement Input Lower limit Upper limit

Ebers-Moll Gummel plots Veb, Vcb 10 mV 200 mV

Gummel- Current gain Veb, Vcb 110 mV 700 mV

Poon Gummel plots 1 Veb, Vcb 100 mV 700 mV

Gummel plots 2 Veb, Vcb 50 mV 600 mV

Common-emitter Vec −5 V 5 V

where θb are the parameters for a specified BJT model and y(n) is the relevant data at

time index n. Observed current values of germanium BJTs can vary over 6 orders of

magnitude; normalising each error value by y(n) weights the function to ensure that

error when ŷ is small is not under-represented.

Four error functions exist for different data: gain/current ratios εcr, forward Gum-

mel εfg, reverse Gummel εrg, and common-emitter characteristic εce. Objective func-

tions are created from the combinations of data:

• Gain/current ratios: ξcr(θb) = εcr(θb, y);

• Gummel plots: ξg(θb) = εfg(θb, y) + εrg(θb, y);

• Gummel plots and common-emitter characteristic: ξg,ce(θb) = εce(θb, y) +

0.01× ξg(θb).

A heuristic weighting is applied in the combined Gummel/common-emitter charac-

teristic objective function to account for the increased number of measurements the

common-emitter characteristic uses.

Two optimisation algorithms were used from MATLAB’s optimisation toolbox,

fminsearch which uses the Nelder-Mead simplex method [92], and fmincon,

which uses the interior-point method [93]. The Nelder-Mead simplex method is useful

in this scenario due to its ability to handle discontinuous surfaces. This enabled the

use of objective functions that would return an infinite value if the parameters supplied

were negative, preventing non-physical parameter sets. Experimentally it was found

that this combination provided better convergence properties than using the interior-

point method with a similar boundary. In optimisation stages where more complex
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boundaries were required to ensure a suitable starting point was found for the follow-

ing stage the interior-point method was chosen. The final stage of characterising each

model was performed with the Nelder-Mead simplex method.

As mentioned in Section 3.2.4, a physically informed homotopy solver was imple-

mented for solving the common-emitter characteristic when terminal resistances were

used. Values of GMIN ranged from 1 kS to 10 zS with 100 points spaced logarithmi-

cally. The value of GMIN was decreased according to the number of iterations required

for Damped Newton’s method to converge. For the number of executed iterations i to

reach a solution, and the maximum number ī,

• i < ī/10 then GMIN moved 10 values,

• i < ī/5 then GMIN moved 5 values,

• i < ī/3 then GMIN moved 3 values,

• i < ī/2 then GMIN moved 2 values,

• otherwise, GMIN incremented by one value.

Ebers-Moll

Following the direct extraction, one stage of optimisation is applied to find the final

values of the Ebers-Moll model. The optimisation uses both Gummel plots with a low

voltage range (see Table 4.5) to match the first ‘ideal’ region in which the gradient of

the collector current is approximately constant. Final parameter values can be found

in Table 4.7.

DC Gummel-Poon

The optimisation procedure for the DC Gummel-Poon model is illustrated in Figure

4.16. After the direct extraction stage, three stages of optimisation are used. The inter-

mediate optimisation stages use the interior-point method with constraints as shown in

Table 4.6.

The first optimisation stage works on the current gain of the BJTs, significantly re-

ducing the effects of Is, Vaf , Var,Rc,Nf ,Nr enabling optimisation on a reduced number

of parameters and thus search space dimensions. The following stage further tunes a

subset of the parameters, targeted at the high-current behaviour of the Gummel plots.

Finally, all parameters are optimised using the Gummel plots and common-emitter
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Table 4.6: List of all parameters, constraints used in the intermediate optimisation

stages, and initial values used for parameters that were not found through direct ex-

traction.

Parameter Optim. Constraints Init. Values

Lower Lim. Upper Lim.

Is Saturation current - - -
βf Forward current gain 50 250 -
βr Reverse current gain 3 20 -
Nf Forward ideality factor - - -
Nr Reverse ideality factor - - -
(Vt) Thermal voltage - - -
Vaf Forward Early voltage - - -
Var Reverse Early voltage - - -
Ikf Forward knee current (gain roll-off) 10 µA 500 mA -
Ikr Reverse knee current (gain roll-off) 10 µA 500 mA -
Ise BE junction leakage current 0.1 fA 1 mA Is/2

Isc BC junction leakage current 0.1 fA 1 mA Is/2

Ne BE junction leakage emission coefficient 0.5 4 2.3
Nc BC junction leakage emission coefficient 0.5 4 2.4
Rb Base resistance 1 Ω 250 Ω 25 Ω

Re Emitter resistance 0.1 nΩ 2 Ω 10 mΩ

Rc Collector resistance - - 10 mΩ

Ceb Emitter-base capacitance - - -
Ccb Collector-base capacitance - - -
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Figure 4.16: The implemented optimisation strategy to find parameter values for the

DC Gummel-Poon BJT model.

characteristic. This overall optimisation resulted in the final extracted parameter val-

ues which are used in the model comparison, shown in Table 4.8.

4.4.4 Results

Comparing values between the Ebers-Moll parameters in Table 4.7 and DC Gummel-

Poon parameters in Table 4.8 large discrepancies between the values of the same pa-

rameters are found, in particular for βf and βr. Invariably this is caused by both the

different voltage ranges the optimisation is performed on and the different optimisa-

tion procedures. What can be assured is that the parameters produce a model that is

the closest fit to the measurements as defined by the optimisation procedure, i.e. both

sets of parameter values are valid despite not matching.

The first AC128 and second OC44 BJTs were selected for the VA comparison, us-

ing the mean final objective value to determine the best fit for both models. Fit to mea-

surements of the optimised Ebers-Moll model is illustrated in Figures 4.17 and 4.18 for
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Table 4.7: Complete set of extracted parameters from all measured germanium BJTs

for the Ebers-Moll model. * marks the BJTs used in the comparison.

AC128 OC44

1* 2 3 4 1 2* 3

Obj. Val. 0.1408 0.1454 0.1746 0.1845 0.08730 0.07667 0.8533

Parameter
Is (µA) 31.97 30.87 37.39 30.31 2.729 3.150 2.89
βf (A/A) 51.83 42.53 47.94 43.16 102.0 98.40 214.8
βr (A/A) 10.12 10.62 7.485 5.036 9.593 12.24 24.49
Nf 1.195 1.142 1.250 1.299 1.127 1.114 1.063
Nr 1.158 1.192 1.229 1.218 1.155 1.137 1.064

Table 4.8: Complete set of extracted parameters from all measured germanium BJTs

for the DC Gummel-Poon model.

AC128 OC44

1* 2 3 4 1 2* 3

Obj. Val. 1.038e-3 1.652e-3 1.468e-3 1.466e-3 1.200e-3 0.962e-3 0.822e-3

Parameter
Is (µA) 27.77 31.67 29.44 20.66 1.423 2.245 2.867
βf (A/A) 156.7 125.7 149.9 229.6 307.0 283.5 226.2
βr (A/A) 54.45 29.18 15.18 14.66 20.27 24.10 19.78
Nf 1.142 1.154 1.171 1.133 1.022 1.067 1.097
Nr 1.135 1.157 1.176 1.140 1.025 1.080 1.110
Vaf (V) 19.93 61.24 17.95 19.68 8.167 6.863 8.787
Var (V) 54.1 102.3 47.06 88.28 14.84 12.40 15.26
Ikf (mA) 1322 606.2 642.8 463.0 43.82 57.93 109.5
Ikr (mA) 122.5 126.3 411.6 241.5 611.7 1012 477.8
Ise (µA) 3.047 2.485 2.36 2.190 0.03053 0.09406 0.1404
Isc (µA) 5.920 4.295 5.37 7.545 0.2135 0.3443 0.2958
Ne 2.118 1.836 2.007 1.796 1.316 1.548 2.130
Nc 1.383 1.409 1.372 1.363 1.258 1.494 1.475
Rb (Ω) 2.234 2.403 3.477 1.885 32.83 23.60 15.03
Re (mΩ) 215.3 183.1 290.2 306.4 968.7 604.9 606.2
Rc (µΩ) 36.15 11.82 7.453 17.27 989.9 22.63 1032
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the OC44 and AC128 respectively. The selected optimisation ranges of the Gummel

plots all demonstrate a good fit to measurements. Limitations of the Ebers-Moll model

are highlighted by the deviation from measurements at large current values in each of

the Gummel plots, and when |Vec| is large in the common-emitter characteristic.

The fit of the DC Gummel-Poon model to the same measurements is illustrated

in Figures 4.19 and 4.20 for the OC44 and AC128 respectively. Fit in high current

regions of the Gummel plots is markedly improved, and similar improvements can be

observed in the common-emitter characteristic.

Despite having several additional terms in the model designed to fit measurements,

systematic error is still observed in the optimised DC Gummel-Poon model. This is

likely indicative of a combination of two issues: that there are unmodelled effects in

the behaviour of the BJT; and that the optimisation strategy landed in a local minimum

of the search space. It is also possible that due to the sensitivity of the devices that

during the measurement temperature effects were non-negligible leading to distorted

measurements. Nonetheless, the fit is clearly improved over that of the Ebers-Moll

model and therefore provides an interesting model with which to compare for use in

VA models.

4.5 Virtual Analogue comparison of Bipolar Junction
Transistor models

Models of both case studies were created using the extracted parameter values. Three

metrics were used to compare the differences in BJT models: informal listening tests, a

comparison of model output waveforms, and a comparison of computational efficiency.

For each test all potentiometers were set to the maximum position, testing different

positions caused no substantial difference in results.

Further validation of the BJT model by comparison to circuit measurements were

omitted due to the sensitivity of the devices: changes in room temperature could

change the behaviour of the BJT such that the circuit behaves significantly different.

4.5.1 Informal listening tests

The focus of the analysis of the models is the objective difference between the outputs

of circuit models using the different BJTs. Because of this a formal listening test

was excluded, but informal listening tests were performed to get some indication of

perceptual differences.
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Figure 4.17: Optimised fit of the Ebers-Moll model to measurements of the OC44.

Measured points (downsampled by a factor 5 for Gummel plots and 3 for common-

emitter) are marked by ◦, lines indicate optimised model. For the common-emitter

characteristic, Ib = 3, 5, 8, 10 µA.

0 0.2 0.4 0.6

10-6

10-4

10-2

100

C
ur

re
nt

 (
A

)

0 0.2 0.4 0.6

10-6

10-4

10-2

100

0 1 2 3 4
0

5

10

-4 -3 -2 -1 0

-1

-0.5

0

Figure 4.18: Optimised fit of the Ebers-Moll model to measurements of the AC128.

Measured points (downsampled by a factor 5 for Gummel plots and 3 for common-

emitter) are marked by ◦, lines indicate optimised model. For the common-emitter

characteristic, Ib = 26, 51, 75, 100 µA.
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Figure 4.19: Optimised fit of the DC Gummel-Poon model to measurements of the

OC44. Measured points (downsampled by a factor 5 for Gummel plots and 3 for

common-emitter) are marked by ◦, lines indicate optimised model. For the common-

emitter characteristic, Ib = 3, 5, 8, 10 µA.
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Figure 4.20: Optimised fit of the DC Gummel-Poon model to measurements of the

AC128. Measured points (downsampled by a factor 5 for Gummel plots and 3 for

common-emitter) are marked by ◦, lines indicate optimised model. For the common-

emitter characteristic, Ib = 26, 51, 75, 100 µA.

78



Chapter 4. Bipolar Junction Transistor modelling for Virtual Analogue

Seven listeners from the field of VA modelling participated, the group consisted of

the authors of [94], their colleagues, and attendees of the DAFx 17 conference. The

authors and their colleagues used their own personal listening setup which varied be-

tween headphones and loudspeakers, while the attendees of DAFx 17 listened through

a set of closed-back studio headphones driven by a headphone output of a laptop.

Two guitar signals – a short riff and a single chord – were processed by both

case studies at 8× oversampling as a means of comparing each model, available at

https://bholmesqub.github.io/DAFx17/. One listener from DAFx 17 re-

ported that the difference between samples is minimal. The remaining listeners agreed

that differences could be heard between each model, with the Ebers-Moll model having

the most high frequency content due to distortion and the AC Gummel-Poon having

the least.

Further sound examples are provided for readers1. The new sound examples feature

cleaner guitar recordings and amp simulations to demonstrate the effect in context.

4.5.2 Waveform comparison

An objective comparison of each BJT model is achieved here using time-domain wave-

forms. Sinusoids at different frequencies and amplitudes were processed by both case

studies and each model. To remove transient behaviour from the results the waveform

was repeated for 2 s, with the final period of each of these signals shown in Figure 4.22

and 4.21 for the Rangemaster and Fuzz Face respectively. Plots at 1200 Hz show the

largest difference for the AC effects, illustrating the low-pass type behaviour of the

capacitances. Differences due to the increased DC complexity are most prominent at

lower amplitudes.

4.5.3 Computational efficiency

To understand the cost of increasing the complexity of the BJT model the computa-

tional efficiency of each model was compared. An Ebers-Moll model with Ceb and

Ccb (AC Ebers-Moll) was included for this test to provide an improved assessment of

the cost of the capacitances. Three metrics were selected: average time required for

one second of simulation, average iterations, and average sub-iterations as Damped

Newton’s method was chosen to solve the nonlinear equations.

The test drives both case studies with a guitar signal for each BJT model, with the

peak amplitude of the signal set to 20 different levels. Computation time was then

1https://bholmesqub.github.io/thesis/chapters/bjt-modelling/
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Table 4.9: Mean simulation time required to process one second of signal, iterations

per sample, and sub-iterations per sample of circuit models processing a guitar chord

using different BJT models. The Rangemaster was tested over a peak voltage range of

0.1− 2 V, the Fuzz-Face over a range of 10− 100 mV.

Model Rangemaster Fuzz-Face

Sim. Mean Iter. Sim. Mean Iter.

time/s (ms) /Sub-iter. time/s (ms) /Sub-iter.

DC E.M. 65.3 3.56/0.28 148.3 3.64/0.03

AC E.M. 38.4 3.50/0.19 150.5 3.58/0.01

DC G.P. 207.9 3.53/0.20 421.5 3.03/0.03

AC G.P. 205.2 3.49/0.13 411.2 2.99/0.01

measured by MATLAB’s cputime function to measure the simulation time indepen-

dent from other processes that may use computer system time. The results are shown in

Table 4.9. It is clear from the results that increasing the DC complexity causes a signif-

icant increase in computation time, whereas including additional capacitances carries

little cost. As iterations and sub-iterations decrease with increasing model complex-

ity the increase in computation must be due to the increased complexity of evaluating

the model equations. Decrease in computation cost when including the capacitances

can be attributed to the reduction in high frequencies reducing the stress placed on the

iterative solver, outweighing the increase in the complexity from including additional

components.

4.6 Conclusion

A comparison of BJT models has been presented with a focus on germanium BJTs. A

model similar to the Gummel-Poon was described as an extension to the Ebers-Moll

model. Both Ebers-Moll and DC Gummel-Poon models were characterised by extract-

ing parameters from measured data using a multi-step optimisation strategy. Models

with extracted parameter values demonstrated a good fit to the measurements, with

the Ebers-Moll model failing where anticipated, and the DC Gummel-Poon offering

improved fit in regions where the Ebers-Moll model exhibited high error.

The resultant models were compared through the use of two case study circuits

covering both moderately and highly distorted circuit outputs. The circuit models were

compared using three metrics: audible and waveform differences, and computational
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Figure 4.21: Single cycle waveforms of sine waves at various frequencies and ampli-

tudes, and the respective Fuzz Face output with different BJT models.
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Figure 4.22: Single cycle waveforms of sine waves at various frequencies and ampli-

tudes, and the respective Rangemaster output with different BJT models.
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efficiency. Results show that increase in model complexity does make a change to the

behaviour of germanium BJTs in VA circuit models. This work has primarily focused

on improving DC characterisation; however, the results show that AC effects are at

least equally important. The improved DC characterisation has a significant increase

in computational cost whereas the cost of the AC effects are minimal. These results

indicate that any first extension to the Ebers-Moll model should be AC effects, and

further extensions should then concern DC effects.

The core motivating factor for implementing and characterising more sophisticated

BJT models was to reduce the error present in VA circuits featuring germanium BJTs.

Should modellers encounter situations where the Ebers-Moll model is insufficient an

extended model has been validated which will improve accuracy. An implementation

of the Gummel-Poon model has been included in ACME.jl2 emulation tool for mod-

ellers interested in further investigation.

2https://github.com/HSU-ANT/ACME.jl
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Chapter 5

Identification problem design and
analysis

A major objective of the work presented in this thesis is to develop strategies for min-

imising the difference between a circuit and its model, exclusively operating on in-

put/output data. In the following chapter this objective is divided into two strategies,

calibration and parameter estimation, both utilising similar factors though they are ap-

plied differently. Prior to their application to challenging case studies in the following

chapters, here maximally simple case studies are examined, enhancing the study of

each factor of both calibration and parameter estimation and how both identification

problems are formed.

The general problem formulation shared by both strategies is illustrated in Figure

5.1. An excitation signal Vi drives both the circuit and the model. An objective function

then compares the input/output data to yield a value of ξ which enumerates the differ-

ence between model and circuit. The values of the physical parameters in θ define the

behaviour of the chosen circuit model and are tuned using an optimisation algorithm

to minimise the value of ξ. From this diagram the individual elements required for a

successful identification are indicated: a suitable physical model and a combination

of objective function and excitation signal that exposes the desired behaviour of the

circuit to be modelled.

Analysis of the objective function, excitation signal, and model is required to deter-

mine whether they are sufficient to create a model that matches with the target device.

Broadly this depends on the objectives of the identification. Calibration attempts to

capture the input/output behaviour of the circuit over a predefined range of operation

which is represented by the objective function, aiming to achieve this with a minimal

investment of effort. On the other hand parameter estimation focusses on retrieving

84



Chapter 5. Identification problem design and analysis

Analogue

Audio Effect

Objective

Function

Physical

Model

Vi

θ

Vo ξ(θ)

V̂o

Figure 5.1: Diagram illustrating the evaluation of a parameter set θ by comparison

of a physical model with said parameters and the desired analogue audio effect. The

dashed line indicates the use of the input signal in the case that the objective function

evaluates the transfer function of the circuit.

accurate parameter values for the model such that the results can be used in further

analysis of the circuit, or extended models using the identified model as a building

block, which may demand a larger investment in analysis to provide results that are

more widely applicable.

Identifying circuits with the objective of estimating the physical circuit parameters

is assumed to be the more challenging of the two strategies, likely requiring a highly

accurate underlying model. Symbolic analysis of the model is employed in an attempt

to determine whether the parameters are in fact estimable. Whether the parameters

are estimable with the selected data from the excitation signal/objective function must

then be verified using simulated data.

With the only requirement for calibration being the capture of the circuit behaviour,

there is no need to investigate whether the model parameters are estimable. The search

is instead for a technique of improving the speed of the identification process which in

itself requiring minimal computation and user time.

Analyses of both calibration and parameter estimation are performed to determine

whether they satisfy their individual objectives, and a rudimentary comparison is per-

formed to highlight the differences between strategies. First suitable models are de-

signed for use in the identification procedure.

5.1 Model design

The case study circuits featured in this chapter are an RC circuit and the single sided

diode clipper (SSDC), pictured in Figure 5.2. Though the end objective is to identify
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Figure 5.2: (a) A basic RC circuit, (b) The SSDC from Figure 3.1, both with labelled

nodes.

nonlinear circuits, by selecting the first case to be a linear circuit simplifies the identi-

fication task, and once a suitable method has been found for it, the method can then be

extended for nonlinear behaviour.

A schematic is assumed to be available for the circuit being modelled from which

the circuit topology can be extracted. Models of the constituent components must then

be selected, each component parameter is gathered into the circuit parameter vector

θ. Depending on whether the circuit is linear or nonlinear (all presented circuits are

time invariant with the exception of potentiometers, which are constrained to time

invariance) a suitable modelling paradigm is then chosen and the circuits are turned

into computable models. Finally these models can be analysed to determine whether

the value of each parameter can be estimated, though this is not essential if the objective

is solely the capture of circuit behaviour.

5.1.1 Parameterisation

Prior to the design of a circuit-level model, component models must first be selected

from which a set of parameters is defined. For any given component a range of models

exists with different levels of complexity and numbers of parameters. This has been

seen in the previous chapter where the Ebers-Moll model which has 5 parameters is

extended to the AC Gummel-Poon model with 13. Components that are typically

represented ideally with linear models may also be extended in scenarios that warrant

additional complexities, for example the resistor exhibits dynamic behaviour at high

frequencies [95].

Each parameter included in the model increases the number of dimensions in the

search space of which the optimisation algorithm must find the minimum. It therefore

benefits to begin with the simplest component models to reduce the amount of work

the optimisation algorithm must perform. A trial-and-error approach must be used to

find the optimal set of component models: if the circuit behaviour cannot be fit by its
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model, some behaviour has been excluded which requires either additional complexity

in the components or a change in topology that often involves a change in components.

The simplest component models of a resistor and capacitor are the single parameter

component laws given in Chapter 2.1.1. For the RC circuit this yields the parameter

set

θrc = [R1 C1]. (5.1)

The Shockley model is chosen for the SSDC, adding two parameters to the set of the

RC circuit,

θdc = [R1 C1 Is N ]. (5.2)

Ideal values and respective tolerance for parameters can be found from the schematic,

though for multi-parameter component models often there are not readily available val-

ues. In this situation datasheets of the multi-parameter component can be used to find

initial values, or alternatively extracted from a set of measurements on equivalent de-

vices not embedded in the circuit. This chapter only uses simulated data so parameter

values do not need to refer to a specific circuit, R1 = 2.2 kΩ, C1 = 10 nF, Is = 10 fA,

N = 1.

5.1.2 Modelling paradigm

With a set of component models defined it is then possible to create a circuit-level

model. As previously stated in Chapter 2.1.3, MNA is used to derive each model used

in this work. Two forms derived from MNA are used for linear and nonlinear models:

transfer functions for the linear RC circuit, and a state-space model for the SSDC.

Transfer functions offer a method of representing a wide frequency range in a low

number of data points in comparison to a time domain signal. Nonlinear behaviour is

more challenging to represent in the frequency domain so by choosing a time domain

state-space model the nonlinear behaviour can be properly captured. Derivations of

each model are worked through here to demonstrate the link from MNA equations to

the final model form.

It is important to note that transfer functions do not directly relate to the diagram in

Figure 5.1 which is described in the time domain. In this situation a Fourier transform

(specifically a DFT) is effectively placed in the objective function and the input is

deconvolved from the circuit and model outputs to produce the transfer functions to

be compared, though these tasks are performed offline such that they are not repeated

during optimisation. Further discussion is provided in Section 5.2.1.
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RC circuit

The RC circuit illustrated in Figure 5.2 has 2 nodes and 1 voltage source producing 3

unknowns, the nodal voltages V1, V2, and the current through the voltage source Ivi.

Using MNA this circuit is characterised by

V1 − V2

R1

+ Ivi = 0 (Node 1), (5.3)

−V1 − V2

R1

+ C1
dV2

dt
= 0 (Node 2), (5.4)

V1 = Vi (Source Vi). (5.5)

Here the conventions used are current flowing out of a node is seen as positive, and cur-

rent flows from positive to negative voltages. The nodal equations can be represented

in matrix form, GR1 −GR1 1

−GR1 GR1 0

1 0 0


V1

V2

Iv

+

0 0 0

0 C1 0

0 0 0


V

′
1

V ′2

I ′v

 =

0

0

1

Vi. (5.6)

As a transfer function is the desired output of the derivation, the voltage derivatives

can instead be replaced by the steady-state term of the Laplace transform, i.e. let the

derivative become a part of the conductance of the capacitor, in this case GC1 = jωC1

such that,  GR1 −GR1 1

−GR1 GR1 +GC1 0

1 0 0


V1

V2

Iv

 =

0

0

1

Vi. (5.7)

Inverting the matrix and using a selection vector NO = [0 1 0] to define V2 as the

output of the model,

V2 = NO

V1

V2

Iv

 = NO

 GR1 −GR1 1

−GR1 GR1 +GC1 0

1 0 0


−1 0

0

1

Vi, (5.8)

which can finally be rewritten as the transfer function of the circuit:

H(s) =
V2

Vi

=
1

1 + sR1C1

. (5.9)

This equation can now be used to compute the frequency response of the RC circuit by

specifying values of ω and letting s = jω.
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Single sided diode clipper

As the SSDC is simply the RC circuit with an additional diode across the output ter-

minals, the nodal equations are similar but with the added diode VCCS term Id(V2),

V1 − V2

R1

+ Ivi = 0 (Node 1) (5.10)

−V1 − V2

R1

+ C1
dV2

dt
= Id(V2) (Node 2) (5.11)

V1 = Vi. (Source Vi) (5.12)

Again this can be expressed using matrix notation, with the dynamic and static parts

separated, i.e. capacitances operate on the nodal voltage derivative vector, GR1 −GR1 1

−GR1 GR1 0

1 0 0


V1

V2

Iv

+

0 0 0

0 C1 0

0 0 0


V

′
1

V ′2

I ′v

 =

0

0

1

Vi +

0

1

0

 Id(V2) (5.13)

To derive a state-space model from this form it must first be discretised as described

in Section 2.1.3. A state term xc is introduced and the conductance of the capacitor is

redefined as GC1 = 2fsC1, with the state updated by xc(n) = 2GC1V2(n)− xc(n− 1).

The remaining part of the discrete model is given by
GR1 −GR1 1

−GR1 GR1 +GC1 0

1 0 0



V1(n)

V2(n)

Iv(n)

 =


0

1

0

xc(n−1)+


0

0

1

Vi(n)+


0

1

0

 Id(V2(n)). (5.14)

From (5.14) the necessary incidence matrices can be found from the model,

NO = NC = NN =
[
0 1 0

]
, (5.15)

so that the state-space matrices can be derived as in Chapter 2.1.2,

A =
4C1R1fs

2C1R1fs + 1
− 1 B =

4C1fs

2C1R1fs + 1
C = − 4C1R1fs

2C1R1fs + 1
, (5.16)

DO =
R1

2C1R1fs + 1
EO =

1

2C1R1fs + 1
FO = − R1

2C1R1fs + 1
, (5.17)

DN = DO EN = EO FN = FO. (5.18)

Specifying a value for fs the model can now be driven in an identical manner as the

circuit, supplying a signal for Vi and recording the output Vo.
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5.1.3 Redundancy analysis and models with estimable parameters

In the design of a model it is not guaranteed that each parameter is estimable. First

consider the case of two resistors in series: basic circuit theory (specifically working

from Kirchoff’s Current Law) dictates that the total resistance is the sum of the two

individual resistances. For example when applied to the RC circuit the resistance could

be shown as two resistances, e.g. letR1 = R1,1+R1,2, resulting in the transfer function

H(s) =
V2

Vi

=
1

1 + s(R1,1 +R1,2)C1

. (5.19)

If no other components are connected in parallel then the resistance can be summed to

one value; equivalent behaviour is observed so long as the sum of the two is the same

regardless of their individual values, meaning that they cannot be estimated. This is

referred to as parameter redundancy. Astute readers will notice that the parameters

only appear in one term as a sum and product meaning that only one parameter is

required to control the behaviour of the circuit. Not every case may be as easy to

identify as the presented case, and therefore it serves to have a method of analysis to

determine whether a model exhibits parameter redundancy.

Originally designed for biological models, here the method from [32] is adapted

for circuit models. To identify parameter redundancy, first an exhaustive summary

κ must be defined that extracts all terms including parameters while excluding other

behaviour, e.g. time, voltage, etc. A Jacobian matrix is then found as the partial deriva-

tives J(κ) = ∂κi/∂θj . By definition rank(J(κ)) ≤ dim(θ) where dim(θ) is the

number of parameters. If the rank of this matrix is found to be lower than the number

of parameters i.e rank(J(κ)) < dim(θ), the model is said to exhibit parameter redun-

dancy, and if rank(J(κ)) = dim(θ) then each parameter is estimable. Following the

analysis and correction of the presented models using this method, whether a model

has estimable parameters is demonstrated numerically in Section 5.3.2.

The success of this method is dependent upon determining an accurate exhaustive

summary. Many models require some manipulation before they can produce this. Re-

visiting the case of two series resistors, if represented in MNA form, a section of S

may resemble  GR1,1 −GR1,1 0

−GR1,1 GR1,2 −GR1,1 −GR1,2

0 −GR1,2 GR1,2

 , (5.20)

which would have a corresponding parameter vector θ = [R1,1, R1,2] and exhaustive

summary κ = [GR1,1, GR1,2 − GR1,1, GR1,2]. Demonstrated in this exhaustive sum-

mary, elements which are equal to another element, or equivalent except for the sign,
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Figure 5.3: Case study circuits adapted to remove redundancy with a known compo-

nent Rko. (a) A basic RC circuit, (b) The SSDC from Figure 3.1.

have been excluded as they do not increase the rank of the resulting Jacobian matrix,

only increasing the computational expense. To visualise the rank of the Jacobian, the

reduced row echelon form can be used as the rank is maintained but the representation

is maximally simplified,

rank(J(κ)) = rank


−G

2
R1,1 0

G2
R1,1 −G2

R1,2

0 −G2
R1,2


 = rank


1 0

0 1

0 0


 = 2. (5.21)

This exhaustive summary would fail in demonstrating the parameter redundancy as

each node is effectively treated as a separate output, but by inspecting the circuit di-

rectly it would be clear that the resistances must be combined. This prompts an initial

step of inspecting circuit schematics for components in parallel and series which oth-

erwise could be replaced by fewer components and therefore parameters.

RC circuit

As previously mentioned, redundancy in the transfer function of the RC circuit is clear

without the application of the symbolic analysis, extracting terms featuring parameters

from (5.9) produces the exhaustive summary κ(θrc) = R1C1. The exhaustive sum-

mary contains only 1 entry and therefore it is impossible for the rank of the Jacobian to

be equal to the number of parameters, i.e. 2. So long as the product R1C1 is the same,

different values of R1 and C1 will produce models with equivalent behaviour.

Should the RC circuit transfer function be expressed differently it may not be possi-

ble to identify the parameter redundancy in the model. For example by simply dividing

the numerator and denominator of the transfer function by R1,

H(s) =
1/R1

1/R1 + sC1

, (5.22)

the exhaustive summary becomes κ(θrc) = [1/R1, C1], of which the Jacobian has rank

equal to the number of parameters. This does not mean that the parameter redundancy
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has been removed, but masked. A second fundamental step in this method is ensuring

that the number of terms featuring parameters is minimised prior to analysis.

When faced with parameter redundancy additional information must be added to

the model. One such method is to include a component with known behaviour across

the output. The RC circuit has been extended with a known output resistance Rko

placed across the output terminals, illustrated in Figure 5.3. Following the same deriva-

tion from MNA as used to produce (5.9), the extended circuit can be modelled as

H(s) =
1

R1/Rko + sR1C1

. (5.23)

No fewer terms with parameters can be found through model manipulation, so the

exhaustive summary is defined as κ(θrc) = [R1/Rko, R1C1]. Examining rank(J(κ))

it is found that the extended model exhibits no parameter redundancy. Intuitively this

can be understood as R1 now also forms a resistor divider, so changes in its value will

not only change the product R1C1 (which could be compensated for with C1) but will

also change the static output amplitude.

Note that, in principle, components other than a resistor can be used, but if a capac-

itor were placed across the output port it would sum with the capacitor already present,

failing to remove parameter redundancy.

A worked example of the parameter redundancy analysis of the RC circuit has been

written in MATLAB, and is available online1 to further clarify the process.

Single sided diode clipper

Further complications with the method are illustrated in the case of the SSDC. An ini-

tial exhaustive summary can be found in the state-space matrices and their combination

with the nonlinear component model κ(θdc) = [A, B, IsC, DO, EO, IsFO, 1/N ]

where repeated matrices have been omitted as they would not change the rank of the

resulting Jacobian matrix, which is found equal to the number of parameters indicating

no parameter redundancy. This result is false, but the state-space matrices are complex

and do not clearly indicate redundancy, as may be expected from circuits more com-

plex than the RC circuit.

Instead an equivalent model can be used: the parameter focussed form described in

Chapter 2.1.3. The current through the voltage source Ivi is not used in the computation

of the state-space model, and the input voltage source can be directly substituted into

1https://bholmesqub.github.io/thesis/chapters/identification-design/redundancy-analysis/
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the relevant nodal voltage, such that[
GR1 −GR1

−GR1 GR1

][
Vi

V2

]
+

[
0 0

0 C1

][
V ′i

V ′2

]
=

[
0

1

]
Is

(
e
V2
NVt − 1

)
. (5.24)

Inspecting this form it is found that several terms with parameters may be removed,

for example by multiplying by R1,[
1 −1

−1 1

][
Vi

V2

]
+

[
0 0

0 R1C1

][
V ′i

V ′2

]
=

[
0

1

]
R1Is

(
e
V2
NVt − 1

)
. (5.25)

Now there are only three terms with parameters, κ(θdc) = [R1C1, R1Is, 1/N ]. It is

again clear that as the number of elements in κ is fewer than the number of parameters

in θdc it is impossible for parameters to be directly estimated.

To observe this in the state-space model the parameters must be combined prior to

the model derivation, i.e. R1 becomes 1, C1 becomes R1C1, and Is becomes R1Is:

A =
4C1R1fs

2C1R1fs + 1
− 1 B =

4C1R1fs

2C1R1fs + 1
C = − 4C1R1fs

2C1R1fs + 1
, (5.26)

DO =
1

2C1R1fs + 1
EO =

1

2C1R1fs + 1
FO = − 1

2C1R1fs + 1
, (5.27)

DN = DO EN = EO FN = FO. (5.28)

Comparing the above state space matrices with the original matrices (5.16-5.18) they

are found to be equivalent. In the output equation the new values of DO and FO have

been divided by a factor R1 which is compensated for by a multiplication of R1 in B

and the diode model. Although the models are equivalent, performing the redundancy

analysis on the new exhaustive summary κ(θdc) = [A, B, R1IsC, DO, EO, R1IsFO, 1/N ]

reveals that there is now 1 redundant parameter.

Redundancy exhibited by the SSDC can be removed using the exact same method

as with the RC circuit, Figure 5.3 shows the circuit extended with an additional known

output resistance Rko. To confirm that the new model has estimable parameters, the

parameter focussed representation can again be analysed,[
GR1 −GR1

−GR1 GR1 +GRko

][
Vi

V2

]
+

[
0 0

0 C1

][
V ′i

V ′2

]
=

[
0

1

]
Is

(
e
V2
NVt − 1

)
. (5.29)

Should the model be multiplied by a factor of R1 it is now the case that R1 would

still appear independently of the other parameters when it combines with Rko, i.e.

κ(θdc) = [R1/Rko, R1C1, R1Is, 1/N ], from which it is found that rank(J(κ)) = 4

and so all parameters are estimable. The same can be found from the state-space
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model, defining the common denominator as GD = 1/(2C1R1fs +R1 +Rko), the new

coefficients are given by

A = GD4C1R1Rkofs − 1 B = GD4C1R1Rkofs C = −GD4C1R1Rkofs,

(5.30)

DO = GDRko EO = GDRko FO = −GDRko, (5.31)

DN = DO EN = EO FN = FO. (5.32)

An important property of the SSDC to note is that the parameter N is always es-

timable due to its encapsulation in the exponent of the nonlinear function. No matter

how the parameters have been combined, N does not directly combine as it is a coeffi-

cient of a voltage that appears as an index whereas the other parameters appear at base

level. This will be further investigated numerically in Section 5.3.2.

Redundancy analysis summary

To recap, to find whether the parameters are estimable for a given circuit model, the

presented process is:

1. Ensure there is no duplicate behaviour in the circuit itself, e.g. parallel or series

components without other connections.

2. Reduce the model to its simplest form, i.e. containing the least number of terms

featuring parameters.

3. Apply symbolic redundancy analysis by collecting the terms featuring param-

eters into an exhaustive summary, and finding the rank of the Jacobian of this

vector with respect to the parameter vector.

The parameter focussed version of MNA is used in conjunction with this process

to aid particularly in step 2 where it can be difficult to determine whether the model is

maximally simplified if using a more condensed modelling paradigm.

Should redundancy be detected, further information must be included into the

model. Here an additional component was included with known behaviour, but other

methods can also be applied, for example adding an additional output like Ivi, though

demonstrating this is outside of the scope of this work.
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5.2 Formulation of the optimisation problem

With a suitable model the remaining elements in designing a successful optimisation

problem are the excitation signal and objective function. These elements are comple-

mentary; the objective function can only enumerate differences between circuit and

model that is exposed by the excitation signal.

5.2.1 Excitation signal

The term ‘excitation signal’ here describes that which is used to drive the signal input

of the device under test, Vi. Some of the circuits presented also require a voltage to

power the circuit, Vc, and while this voltage is important in controlling the behaviour

of the circuit Vc is not treated as a second signal input but instead fixed at a DC voltage.

To expose both dynamic behaviour the excitation signal must contain a range of

frequencies. As mentioned in Chapter 2.2, a common strategy for this is a swept-sine

signal. Nonlinear audio circuits also require a range of amplitudes to comprehen-

sively expose the circuit behaviour, which if using a swept-sine would require multiple

repeats of the signal at different amplitudes. Instead a multi-sine signal is selected,

consisting of a sum of sinusoids between two frequency boundaries and modulated by

an amplitude window w(n),

Vi(nT ) = Vp · w(n)
du∑
d=dl

Adcos(2π d f0 nT + φd), n = 0, . . . , Ns − 1 (5.33)

where Vp is the peak voltage,Ad and φd are the amplitude and phase of sine component

d. The distance between sine wave component frequencies is dictated by f0 = fs/Ns

such that each sine component will have an integer number of periods in the signal.

The lower and upper boundaries dl and du provide a method of bandlimiting the sig-

nal, by selecting values closest to the desired lower and upper frequency boundaries.

Bandlimiting is a desirable property as it enables a convenient method of focusing the

measurements, for example to limit the amplitude of distortion product frequencies

that exceed the Nyquist frequency.

Using the values of Ad to weight the input signal frequency components can help

to improve the measured SNR over the desired frequency range and place a focus

on different frequencies when the objective function directly operates on Vo. Figure

5.4 shows the amplitude response of the RC circuit and the inverse transfer function

normalised such that the maximum value is 0 dB. By sampling the inverse of the mod-

elled amplitude response to find values for Ad the corresponding output of the RC
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Figure 5.4: Amplitude and inverse amplitude response of the RC circuit. Responses

have been normalised such that their maximum value is at 0 dB.

circuit will have an approximately flat frequency response, though due to error in the

initial parameters some mismatch is inherent. Assuming that the noise of the circuit

and measurement equipment is Gaussian white noise this would produce an markedly

improved SNR across the measured frequency range. In real measurement scenarios

this is unlikely to be the case, though the values of Ad can be adapted to compensate

for noise with different properties should the initial measured data be insufficient to

enable a successful identification.

Phase values φd are generated using Schroeder phases [96],

φd = −2π
d−1∑
l=1

(d− l)Ad, d = dl, dl + 1, ..., du. (5.34)

This selection of phases distributes the sinusoids to try to minimise the peak to peak

voltage, creating a multi-sine signal with low crest-factor. For the generated values of

φd to produce a low crest-factor multi-sine signal values ofAd must satisfy the equation

dh∑
d=dl

Ad = 1. (5.35)

A flat amplitude envelope maximises the input SNR over the time domain of the

signal. Illustrated in Figure 5.5 is a comparison between all phase terms φ = 0 and

Schroeder phases. When φ = 0 the amplitude of the middle of the signal is low and

likely to be masked by noise in the circuit.
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When working with a system that is assumed to be linear, the input signal can be

deconvolved from the measured output data, resulting in the measured transfer func-

tion. This can then be directly compared to the modelled transfer function evaluated

at frequencies given by d f0 where d = dl, ..., du. In this case a flat amplitude win-

dow is chosen to prevent adding complexity in the finding of the transfer function, i.e.

w(n) = 1, n = 1, . . . , Ns − 1. To avoid discontinuities at the start and end of the

signal caused by the Schroeder phases, the zero-crossing with the minimum difference

between neighbouring samples is chosen to be the point at which the signal starts.

For nonlinear systems, it is beneficial for the excitation signal to vary over a range

of amplitudes to capture the amplitude-dependence of the nonlinearity. A Hann win-

dow is applied to achieve the range of amplitudes, defined by

w(n) =
1

2

(
1− cos

(
2πn

Ns − 1

))
. (5.36)

This also leaves the system close to a point of equilibrium at the end of the signal to

ensure that multiple periods of the excitation signal are the same, which is necessary

for averaging of measurements.

Finally the excitation signal is scaled such that the peak voltage is at a specified

value Vp. A complete implementation of the signal described in this section is available

in the form of MATLAB code 2.

RC circuit

The RC circuit is assumed to be linear, and as such there is no need for an amplitude

window. The frequency range of interest is the commonly referred to audio band of

20 Hz−20 kHz. To capture at least one cycle of 20 Hz the signal length must be 50 ms.

Selecting the sample rate to be fs = 48 kHz, Ns = 2400, and therefore f0 = 20 Hz,

requiring dl = 1 and dh = 1000. Taking the DFT of the output and deconvolving the

input results in a transfer function with 1000 points between 20 Hz− 20 kHz. As these

cases operate only on simulated data it is not necessary to apply an inverse frequency

response to the signal as the SNR of floating point arithmetic is over what can be

expected of even the best measurement setups.

The specified signal is only an example of what could be used to drive a circuit to

produce the desired transfer function. As in this chapter only simulated data is used the

transfer function is directly evaluated at 1000 points spaced linearly over the frequency

range, drastically reducing computational requirements.

2https://bholmesqub.github.io/thesis/chapters/identification-design/multi-sine/
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Figure 5.5: Constructive interference of a multi-sine signal with φ = 0 for each compo-

nent, and Schroeder phases for comparison. Both multi-sine signals are of 1 s duration,

48 kHz sample rate, feature components between 20 Hz and 2 kHz and are normalised

to 1 V peak.

Data sets consisting of the transfer functions are simulated using the models of

the RC circuit with and without the known component Rko = 300 Ω, their amplitude

responses illustrated in Figure 5.6.

Single sided diode clipper

Distortion of nonlinear circuits typically requires oversampling to reduce aliasing, but

increasing the sampling frequency also increases the number of data points which in-

creases the time the optimisation algorithm requires. For this reason the sample rate

was set at a common, not oversampled, audio sample rate, fs = 48 kHz, and instead

the upper frequency limit was chosen to be 8 kHz such that the cutoff frequency of the

RC circuit was contained but frequencies close to the Nyquist frequency were omitted.

To reduce the computation time required to simulate the model driven by the excita-

tion signal the signal length was set as 5 ms, resulting in a value of f0 = 200 Hz. The

length of the signal in samples is therefore Ns = 240, requiring dl = 1 and dh = 40 to

produce the desired frequency limits.

The resulting input signal and outputs of both the SSDC and the circuit extended

with the known component Rko = 30 kΩ are illustrated in Figure 5.7.
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Figure 5.6: Amplitude response of the RC circuit transfer functions used for optimisa-

tion, both with and without Rko = 300 Ω.
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Figure 5.7: Time domain input/output signals used for optimising the single-sided

diode clipper.
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5.2.2 Objective function

Objective functions are designed to provide a scalar error value ξ(θ̂) that represents

the magnitude of difference between measured and simulated data for the current es-

timated set of parameter values θ̂. A common choice for objective functions is to use

a least-squares metric, i.e. minimising the square of the error, which has been applied

in VA literature, e.g. [11]. For the current estimated values of the parameter set θ̂, a

least-squares objective function is given by

ξ(θ̂) =
1

η

Ns−1∑
n=0

ε(n, θ̂)2. (5.37)

Here n is used as a general index term for evaluating both discrete frequency and time

domain data. For both quantities ε is defined equivalently,

ε(n, θ̂) = y(n)− ŷ(n, θ̂), (5.38)

where y is the measured signal and ŷ is the estimated modelled signal, and y can

represent either H(sn) or Vo(nT ). The discrete index n is used to move through both

outputs: nT representing the current time step, and sn = jωn the current frequency.

Normalisation factor is given by η =
∑N

n=0 y(n)2 which is proportional to the energy

in the signal, and was chosen to improve the ability to compare objective function

values of signals of different lengths and contents.

5.3 Analysis of the optimisation problem

Prior to performing optimisation on data measured from a circuit it is often of use to

first analyse the optimisation problem to determine whether and where problems may

arise. This step is divided into two areas: analysis using the objective function which is

largely used in calibration, and analysis of parameter error which is used for parameter

estimation.

5.3.1 Analysis using the objective function

The objective function is analysed for two purposes: the first as a method of confirming

the results of the redundancy analysis, and the second to detect any parameters to which

the function is insensitive.

By directly visualising the search space it can be determined whether a global min-

imum exists, i.e. a single location at which ξ is at its minimum value, which for sim-

ulated noiseless data will be ξ = 0 but will vary for real measurements. If one is
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found this indicates that the model has estimable parameters as no other combination

of values could yield the minima.

‘Screening’ of parameters refers to the fixing of parameter values to reduce model

complexity [97]. The technique is applied here to reduce the number of search space

dimensions with the objective of reducing the optimisation time required to identify a

circuit. Fixing a parameter that the objective function (and thus also the circuit model)

is highly sensitive to would result in a high amount of error being introduced into the

model, so to perform parameter screening first an analysis of the objective function is

required to determine which parameters it is least sensitive to.

Objective function visualisation

Directly inspecting the shape of the objective function can provide immediate intu-

ition into both the appearance of minima in the search space and the sensitivity of the

objective function to each parameter. Figure 5.8 shows the top-down and side-on per-

spectives of the RC objective function using the simulated data set. Values of R1 vary

over ±20% of the specified accurate value, from which values of C1 are chosen such

that the product R1C1 remains the same.

Confirming the result of the redundancy analysis, the objective function of the RC

circuit with no known components shown on the left of Figure 5.8 has a ‘ravine’, i.e.

a curve along which ξ = 0. So long as the product R1C1 is the same as the accurate

product, the transfer function and therefore objective function value is the same. The

curve observed in the figure is due to the scaling: for R1C1 to remain the same when

the value of R1 doubles, the value of C1 must be halved resulting in a curve instead of

a linear relationship. Inspecting the objective function for sensitivity to the parameters,

the objective function changes with similar magnitude with response to changes in R1

and C1.

The right side of Figure 5.8 is a plot of the objective function of the RC circuit with

the addition of Rko. Instead of there existing a curve of points over which ξ = 0 there

is only one visible point, indicating that the transfer function of the accurate circuit

cannot be produced by models with different parameter values. A second change to the

shape of the objective function is that it is much more sensitive to changes in R1 than

to C1, i.e. the value of the objective function changes faster with respect to changes in

R1 than C1 as can be seen in the rapid change of colour in the y-axis but slow change

in colour on the x-axis.

For models with more than 2 parameters it is not possible to plot the objective

function as a surface. Instead other visualisations must be utilised, for example a
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scatter plot of points with changes in the value of each parameter, projected onto an axis

of just one parameter against the objective function value. This plot is demonstrated in

Figure 5.9, where the objective function has been sampled using a grid of 7 points per

parameter over a range of ±20% of R1 and N , and values for C1 and Is chosen such

that the productsR1C1 andR1Is are maintained following the results of the redundancy

analysis. The resultant 74 points have been projected onto an axis of R1 to see how the

objective function changes with respect to R1. As with the RC circuit, both the SSDC

with and without Rko are illustrated.

For the SSDC model without Rko there exist several minima, whereas with Rko

there exists only one. This may indicate that the redundancy in the original model is

not present in the model with Rko, but this indication cannot be assumed to be correct.

Other minima may exist between the plotted points, and also in the other dimensions

of the search space.

The second issue lies in the determining the sensitivity of the objective function

to different parameters. Though for the RC circuit some intuition could be found on

how much the value of the objective function changes with respect to changes in the

parameter values, when only plotting the objective function against one parameter this

is not possible. Multiple parameters must be plotted to then compare the sensitivity.

Instead there exists a set of methods specifically designed for analysing a function’s

sensitivity.

Parameter Screening

Screening of model parameters requires a method of analysis which can be used to

determine which parameters the objective function is most sensitive to, known as sen-

sitivity analysis. Global sensitivity analysis (GSA) refers to the study of attributing

uncertainty in a model’s output (or this case the objective function) to uncertainty in

a model’s parameters and input. The prefix ‘global’ specifies that the analysis is upon

the whole search space as opposed to local operating points. The implemented method,

the Morris method [98] has been used to screen parameters in numerous fields, for ex-

ample in the design of launch equipment for satellites [99]. Trajectories are generated

that traverse the search space using a one-at-a-time strategy i.e. there is a change in

only one parameter between neighbouring sample points. An elementary effect of a

parameter can then be defined as

EEi =
ξ(θ1, ..., θi + ∆, ..., θk)− ξ(θ1, ..., θk)

∆
(5.39)
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Figure 5.8: Top down and side-on views of the objective function surface of RC circuit,

(left) RC model, (right) RC model with Rko included. The base 10 logarithm of the

objective function value is displayed to highlight the points where the value is zero

(which has been substituted with 10−8 to avoid computation problems).
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Figure 5.9: Scatter plot of the SSDC objective function. A range of 7 points for each

parameter are chosen from ±20% of their value, except for C1 and Is which were

chosen to maintain the products R1C1 and R1Is.
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Figure 5.10: EE test on the RC circuit with and without Rko, r = 300.

where θi is the parameter changed by the value ∆ for the elementary effect. The

number of calculated elementary effects for each parameter is given by the number of

trajectories, r. The elementary effects are processed to create two sensitivity measures,

µ∗ and σ expressed by

µ∗i =
1

r

r∑
j=1

|EEj
i |, σi =

(
1

r − 1

r∑
j=1

(EEj
i − µi)2

) 1
2

. (5.40)

The estimated absolute mean µ∗ reflects the overall influence of the parameter on the

objective function, and differs from the mean µ by using absolute values of the ele-

mentary effects, preventing type II errors which are caused by negative values [100].

The estimated standard deviation σ groups both the nonlinearity of the parameter and

the dependence on other parameters relative to the change in the objective function.

Intuitively, this can be understood by considering a change in the value of the elemen-

tary effects: the change must either be caused by a nonlinear parameter i.e. the effect

changes across the range of parameter values, or by a change in another parameter due

to sampling at other locations in the space.

GSA presented in this thesis was performed using SAFE, a MATLAB toolbox for

Global Sensitivity Analysis [101]. Latin Hypercube Sampling was chosen from the

toolbox, a method of sampling that divides the space into a grid from which near-

random samples are chosen while avoiding repeated samples on a given hyperplane

[102].

To confirm that the Morris method functions as expected with the circuit case stud-

104



Chapter 5. Identification problem design and analysis

0 1 2

10-3

0

0.5

1

1.5

2
10-3

r = 30

0 1 2

10-3

r = 300

0 1 2

10-3

r = 3000

Figure 5.11: EE test on the SSDC with different numbers of trajectories, r =

30, 300, 3000.

ies, the RC circuit objective function can be analysed with and without Rko. Figure

5.10 shows this comparison, with the left figure showing the results of the model with-

out the known component, and the right with. As expected, the left plot shows the

objective function to be approximately equally sensitive to both parameters, whereas

for the right plot the objective function is more sensitive to R1 than C1.

Having confirmed comparable results from GSA and direct visualisation, the fol-

lowing question when using GSA is how many trajectories will correctly assess the

sensitivity of each parameter. While this factor is dependent upon the model being

analysed, an estimate can be found through testing different numbers of trajectories

on a single model. Figure 5.11 shows the EE test on the SSDC without Rko for three

different numbers of trajectories. Comparing the plot for r = 30 to r = 300, there is

a noticeable difference between the sensitivity of R1 and C1. With r = 300 the dif-

ference is visibly less, with R1 and C1 close than for r = 30. Broad trends have been

largely captured using r = 30 however, Is has a low sensitivity in comparison to the

other three parameters.

Table 5.1 contains the sensitivity indices of the EE test with r = 300. Using the

values of µ∗ to compare the sensitivity of the objective function to each parameter, Is

is over 15 times lower than the rest of the parameters. As the objective function is

so insensitive to Is it makes a good candidate to remove as a parameter and instead

fix at one value when optimising the model. By fixing a parameter, one dimension of

the search space has been removed which should ideally reduce the time the optimisa-
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Table 5.1: Sensitivity indices of the EET test on the SSDC, r = 300.

θdc µ∗ σ

R1 2.25e− 3 1.50e− 3

C1 2.32e− 3 1.58e− 3

Is 0.13e− 3 0.06e− 3

N 1.59e− 3 1.15e− 3

tion takes, and if the objective function is insensitive to that parameter then the error

introduced by fixing a parameter should be small.

To test this a set of optimisations were performed on 3 models of the SSDC, two

featuring all parameters, with and without Rko, and one with the value of Is fixed at

an initial random value, also without Rko. The optimisation algorithm selected was

the Nelder-Mead algorithm as implemented in MATLAB’s fminsearch [92] with a

maximum of 10000 iterations and an exit condition of a change in both function and

parameter value of less than 1× 10−25. The results of this experiment are displayed

in Figure 5.12, comparing the final value of ξ against the measured cputime from

MATLAB, forcing the optimisation to use only one thread to ensure that the measured

time is not skewed by multithreading.

Comparing the models without the known component, a marginal increase in error

can be observed along with a decrease in computation time. The minimum mean

computation time is achieved by the model using all parameters with the inclusion of

Rko, though the minimum recorded time is when Is is fixed.

Validation signal comparison

To determine the improvement of a model’s fit to the measurements of a circuit, val-

idation metrics are required. In the optimisation procedure only one signal is used to

capture all of the relevant data about the circuit such that the simulation time for each

iteration is minimal. When validating a model the process is less time sensitive, and

therefore a wider selection of signals can be used that better relate to the desired be-

haviour. As the objective function is designed such that the returned value is reflective

of the error between signals independent of what that signal contains, different signals

can be compared using the objective function to investigate the model’s accuracy over

different regions of operations.

The design of the excitation signal requires the specification of both a frequency
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Figure 5.12: Comparison between optimising the SSDC with all parameters, with and

without Rko, and with Is fixed. Computation time is compared against final ξ. 100

optimisations were performed with random parameter values selected from a uniform

distribution over a range of ±20% of each accurate parameter value.

and amplitude range. These ranges can be investigated using a set of new excitation

signals for validation, each signal containing a single windowed sine wave with dif-

ferent peak amplitudes and frequencies, producing a map of objective function values

that compare the measured response of the circuit against the model’s response. The

resultant map will illustrate where the greatest regions of error are with respect to peak

amplitude and fundamental frequency.

Figure 5.13 contains an example comparison of maps for the SSDC. Four maps are

displayed showing the objective function value surface comparing the simulated mea-

surements against models with different parameter values, the first using the set used

to seed the optimisation and the other 3 using parameters resulting from optimisations

with different settings. A drastic change is observed between the seed parameters and

the optimised parameters, indicating that the optimisation has successfully improved

the match between the simulated measurements and the model. Differences between

each of the optimised models are less marked, with the fit decreasing with frequency

across each of the plots.
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Figure 5.13: Four contour plots showing the SSDC objective function value for a set

of Hann windowed sine waves of different peak amplitudes and frequencies, each plot

using a different set of parameter values. (top left) The initial random parameters prior

to optimisation, (top right) resulting values after optimising the model withoutRko and

including Is, (bottom left) resulting values after optimising the model with fixed Is and

without Rko, (bottom right) resulting values after optimising the model with Rko and

including Is.

108



Chapter 5. Identification problem design and analysis

5.3.2 Analysis of parameter error

From the investigation of visualising the objective function in Section 5.3.1, several

flaws were found in using the visualisation to demonstrate whether the parameters of

a model are estimable. Instead of operating on the objective function value, the error

in the estimated parameters can be inspected throughout the optimisation to determine

whether they are converging to the accurate values, directly validating whether the

parameters are estimable. A definition of parameter error is given by

εθ =
|θ̂ − θ∗|
θ∗

(5.41)

where θ̂ is the current estimate of the parameter, and θ∗ is the accurate or reference

parameter value. As the error is a magnitude normalised by θ∗ the error will be 1 when

θ̂ = 2θ∗ and θ̂ = 0, and corresponds to a percentage of error if multiplied by 100.

This metric requires a value with which to compare to, and as the method is designed

to retrieve values without circuit disassembly this is not always available. To prove

utility of the parameter estimation method, circuits will be disassembled to measure

parameters directly thus providing a set of reference values.

When working with simulated measurements, the set of parameter values used in

the model when generating data becomes the reference set. Testing the optimisation

on simulated data prior to using measurements enables verification not only of whether

the parameters are estimable, but also that the combination of objective function and

excitation signal contain sufficient information to enable the parameters to converge,

free of additional measurement challenges such as noise.

Figure 5.14 illustrates the convergence of the RC circuit model parameters for the

models with and without Rko. The optimisation was repeated 300 times of which the

mean parameter error was taken across both optimisations and parameters, noted by

〈εθ〉, and is displayed logarithmically to better capture the data trend. Convergence is

clearly observed for the RC model with Rko in comparison to the model without it for

which εθ is approximately constant, despite the fact that the maximum final objective

function value across all optimisations was 6.82e− 18.

This again can be shown for the SSDC, with results shown in Figure 5.15. Similar

results are displayed with the extended model achieving a much better convergence

to the accurate parameter values than the model without Rko. A significant difference

is caused by the nonlinear diode model however, the parameter in the exponent N is

always estimable as it cannot combine with other parameters, leading to some conver-

gence being observed in the model without Rko as seen in the left plot. Focusing on
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Table 5.2: Optimised parameters of the RC, from left to right: the specified nominal

parameter value, mean optimised value, error of mean value, and RSD of full set of

300 optimised values.

θrc Spec. Mean Error RSD

Optimised RC

R1 (kΩ) 2.2 2.250 2.29% 12.1%

C1 (nF) 10 9.913 8.69× 10−1% 11.7%

Optimised RC +Rko

R1 (kΩ) 2.2 2.200 3.78× 10−12% 1.46× 10−10%

C1 (nF) 10 10.00 6.75× 10−11% 3.24× 10−9%

this parameter – as seen in the right plot – reveals that the parameter has a lower error

than the average and follows the same trend as the model with Rko, though does not

achieve the same level of convergence.

To further understand the difference between circuits with and without Rko anal-

ysis can be performed on the 300 optimised sets of θrc and θdc. For the RC circuit

this analysis is demonstrated in Table 5.2, for the SSDC Table 5.3. Alongside a com-

parison between the mean values of θrc and θdc and their error in percentage from the

specified values, a new metric Relative Standard Deviation (RSD) has been included.

RSD normalises the standard deviation of the set of optimised parameter values by the

accurate value, removing the units from the result so each parameter can be compared,

and is displayed as a percentage of the accurate value. For both circuits the error of

the mean value drops dramatically when including Rko, with a correlated drop in RSD

indicating that each optimisation converges to a small area of values.

Modelling modifications to circuits

A core reason to retrieve the parameter values of a circuit are that if the circuit is

changed, the component parameters will be maintained independent of changes in

topology or addition/removal of other components. One way of determining how suc-

cessful a given set of parameter values may adapt to changes in a circuit is to change

the load of the given circuit. Figure 5.16 shows this test for the SSDC with several

different sets of parameter values. Let accurate parameter values be given by R∗1, C∗1 ,

I∗s , and N∗, and their matching estimates be referred to as R̂1, Ĉ1, Îs and N̂ . Follow-

ing the results of the redundancy analysis in Section 5.1.3, for the SSDC without Rko
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Figure 5.14: Mean parameter error against optimisation iterations for both the RC

circuit model with and without Rko. 300 optimisations were performed to produce the

mean data. The maximum final objective function value between both models and all

300 optimisations was 6.82× 10−18.
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Figure 5.15: Mean parameter error against optimisation iterations for SSDC circuit

model with and without Rko. 300 optimisations were performed to produce the mean

data. The maximum final objective function value between both models and all 300

optimisations was 5.38× 10−6.
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Table 5.3: Optimised parameters of the SSDC, from left to right: the specified nominal

parameter value, mean optimised value, error of mean value, and RSD of full set of

300 optimised values.

θdc Spec. Mean Error RSD

Optimised SSDC

R1 (kΩ) 2.2 2.191 4.29× 10−1% 13.7%

C1 (nF) 10 10.30 3.02% 22.3%

Is (fF) 10 1.028 2.81% 21.9%

N 1 9.999 6.16× 10−3% 10.7%

Optimised SSDC +Rko

R1 (kΩ) 2.2 2.200 1.86× 10−13% 6.05× 10−13%

C1 (nF) 10 10.00 7.11× 10−13% 6.26× 10−13%

Is (fF) 10 10.00 5.29× 10−12% 2.22× 10−13%

N 1 1.000 2.11× 10−13% 9.42× 10−13%

equivalent behaviour can be found from different parameter values by letting

Ĉ1 =
R∗1 C

∗
1

R̂1

, (5.42)

Îs =
R∗1 I

∗
s

R̂1

, (5.43)

N̂ = N∗. (5.44)

The value of R̂1 has then been changed resulting in parameter sets that produce equiv-

alent behaviour when unloaded, i.e. Rko =∞.

To demonstrate how much error is introduced for different load resistances, Figure

5.16 sweeps the load resistance against the resultant value of ξ where different amounts

of error have been introduced to the parameter set. The curves are bell-like, at high

load resistances the circuit becomes equivalent to being unloaded, and therefore fits

exactly with the estimated parameters. At low values of load resistance, the output

voltage becomes small as most of it is across R1, meaning that the difference between

accurate and estimated parameters would be small regardless of the parameter error.

In the middle the error peaks due to there being a significant mismatch in behaviour.

Although the parameters completely reproduce the behaviour of the original simulated

circuit, when the load is changed the behaviour no longer matches. As the parameter

error increases the corresponding value of ξ becomes larger, and vice versa should the
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Figure 5.16: Objective function vs. different load resistances.

estimated parameters be perfectly accurate no error would be exhibited with a change

in load.

5.4 Conclusion

This chapter has introduced a framework for identifying audio circuits exclusively us-

ing input/output data by optimising the physical parameters of a circuit model. The

framework was applied to maximally simple case studies, the linear RC circuit and

nonlinear SSDC.

Redundancy was found in models of both circuits though they used different mod-

elling paradigms, indicating a possible common redundancy in models of circuits that

only express the input/output behaviour of a circuit. As only two cases were presented

further investigation is required to see if this finding holds for other circuits and mod-

elling paradigms.

The detected redundancy was avoided by introducing additional information into

the model in the form of a component with known parameters across the output termi-

nals, in this case a resistor Rko. Confirmation of this redundancy was shown through a

variety of direct visualisation of the objective functions and plotting the convergence of

the parameters during the optimisation process, though primarily the latter. Optimising

the RC circuit without Rko showed no convergence in parameter value, whereas with

Rko a high level of accuracy was achieved. With the SSDC the result was less dramatic

as the parameter N was always estimable, though a significant improvement in final
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parameter value accuracy was noted when using Rko.

Though the initial derivations of the circuit models exhibited parameter redun-

dancy, validation of model’s with and without Rko showed comparable behaviour

across the desired operating range when compared using the sets of sine waves of vary-

ing amplitudes and frequencies. Further, through performing the EET on the SSDC it

was found that one of the parameters could be fixed at an incorrect value and still yield

a similar final value of ξ. A minor decrease in computation time was observed, and

although the optimised parameters for the model using Rko was on average faster to

compute, this result could indicate that on models with a higher number of parameters

that more parameters could be fixed which may yield more of a computational saving.

Further value could be derived from this strategy for models with such a high number

of parameters that the optimisation is prohibitively expensive.
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Calibration of the Dallas Rangemaster
model

Calibration has been defined within the scope of this thesis as tuning of a physical

model to best match the measured behaviour of a circuit over a given range of opera-

tion. To achieve this match, a minimum of user time and effort is desirable: minimal

time spent performing measurements, designing models, and waiting for the optimisa-

tion to produce the calibrated model. Minimising time and effort facilitates the appli-

cation of calibration to new circuits, removing barriers from immediate results.

In this chapter the Dallas Rangemaster Treble Booster guitar pedal is calibrated.

The primary objective is to determine with what accuracy can the circuit be identified

given the restrictions defined by calibration. Identification is here performed on mea-

surements of a real instance of the circuit, as opposed to only simulated measurements

demonstrated throughout Chapter 5.

There are two secondary objectives around the calibration process. The first relates

to the BJT analysis from Chapter 4 to further investigate the differences of semiconduc-

tor material. As the original Dallas Rangemaster used a germanium OC44, a second

BJT, the silicon BC557 is also used in the circuit to provide a point of comparison.

By comparing the results of the identification the objective is to further investigate

how successfully each BJT can be modelled within the context of the circuit using the

Ebers-Moll model.

Additionally the EET introduced in the previous chapter is again applied to screen

model parameters. As the Rangemaster uses more parameters than the single sided

diode clipper the circuit model provides potentially a better case for investigating the

effects of fixing parameters to improve optimisation speed.

This study is adapted from the DAFx 16 publication [103], but updated using the
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Table 6.1: Parameters used in the calibration of the Dallas Rangemaster. Nominal

values are taken from the schematic, measurements, and SPICE models.

Parameter Units Value

Nominal Measured Stochastic Sample

R1 kΩ 470 473.3 506.6

R2 kΩ 68 68.60 63.03

R3 kΩ 3.9 3.897 4.602

R4 kΩ 10 10.00 9.755

Ro MΩ 1 0.997 0.813

C1 nF 4.7 4.92 4.477

C2 µF 47 46.95 51.99

C3 nF 10 11.57 11.18

OC44

Is µA 3 2.7− 3.2 2.249

N − 1 - 0.991

βf A/A 100 98.4− 214.8 95.65

βr A/A 10 9.6− 24.5 11.17

BC557

Is fA 40 - -

N − 1 - -

βf A/A 340 - -

βr A/A 15 - -

results of the research into germanium BJTs from [94] and successive research carried

out by the author into circuit identification. Corrections have been applied to the ini-

tial parameter values for germanium BJTs. The EET has been re-purposed to screen

parameters instead of ranking their sensitivity. Discussion of parameter error has been

removed to improve the focus on calibration.
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6.1 Identification design

6.1.1 Model and parameter selection

As has been used throughout the thesis, a state-space model was selected to represent

the Dallas Rangemaster for the identification, it’s topology defined by the schematic

in Figure 3.4. Maximally simple component models were selected to define the initial

parameter set; single-parameter linear component models and the Ebers-Moll model

from (2.5, 2.6) form

θrm = [R1, R2, R3, R4, Ro, C1, C2, C3, Is, N, βf , βr]. (6.1)

Nominal and measured parameter values for the model are displayed in Table 6.1.

Nominal values for linear component parameters were taken from Table 3.2 (as have

been used throughout) and were used to select the values for the physical circuit com-

ponents. Values for the OC44 were informed by the extracted Ebers-Moll parame-

ters from Chapter 4, and values for the BC557 informed by those used in LTspice.

Measured linear component parameter values were taken from a multimeter with each

component measured in isolation. The final column of the table contains a sample of

randomly generated parameters taken from a uniform distribution where linear com-

ponent parameters varied ±20% and BJT parameters varied ±40% of their respective

nominal values. This sample is used in the generation of simulated input/output data

that is later used in the validation of the identification design.

6.1.2 Excitation signal and objective function

The chosen range of behaviour for the model to capture is defined using the excitation

signal. For the Dallas Rangemaster amplitude and frequency ranges were chosen to

resemble the content of a guitar-type signal as this is the anticipated use-case. The

largest computational expense in optimising the behaviour of a model is the simulation

of that model. Therefore to minimise the computation time a short excitation signal

should be used.

To create a guitar-like excitation signal of minimal duration, signal parameters were

chosen: fs = 100 kHz and Ns = 20× 103 producing a signal 0.2s long. Setting

dl = 10 and dh = 400 selects a frequency range of 50 Hz to 2 kHz, combined with

Vp = 2 V to cover the anticipated guitar signal properties. To maximise the SNR

of the output the inverse transfer function of the linearised Rangemaster was applied

to the excitation signal. The resulting excitation signal and measured output signals
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Figure 6.1: Input and output signals of the Dallas Rangemaster circuit for simulated

measurement, OC44 circuit, and BC557 circuit.

from each of the OC44 and BC557 circuits and also the simulated measurement output

signal using the stochastic parameters are illustrated in Figure 6.1.

At the time of the research the values of Ad used in the multi-sine excitation signal

were not modified to ensure that their sum is equal to 1. Instead they were normalised

using Ns/
√
dh − dl, which provided a signal with a standard deviation that is constant

and independent of the signal parameters. If
∑dh

d=dl
Ad 6= 1 then there are scenarios

in which a high crest-factor can arise, but for the excitation signal used in this work

– prior to the application of the Hann window – the crest factor was 3.36 indicating a

low peak-to-peak voltage.

To compare the output of circuit and model the same objective function from (5.37)

was applied.
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6.1.3 Measurement setup

The Dallas Rangemaster circuit was assembled on a breadboard to facilitate the chang-

ing of BJTs and also the direct measurement of each linear component value. Identical

circuits were used for the OC44 and BC557 BJTs, where the BJT was simply ex-

changed between measurements. The breadboard in question was a component of a

National Instruments ELVIS II Data Acquisition system (DAQ) which offered 16 bit

analogue inputs and outputs to drive and measure the circuit, and also a constant pow-

ersupply to drive Vc.

The input/output signals used in the identification process were sampled at fs =

100 kHz and the output was averaged 100 times to reduce noise. Further signals

were measured for the validation (discussed later in the chapter) and were measured at

fs = 400 kHz as the simulation time of the model is less critical during the validation

process.

6.1.4 Optimisation algorithm

The majority of the optimisation was performed using the Nelder-Mead simplex method

as implemented in MATLAB’s fminsearch function and described in [92]. From

an initial set of optimisation to test exit conditions, convergence was specified by a

change smaller than 1× 10−6 in both objective function and parameter values.

To further remove user-interaction from the process, a genetic algorithm (GA) was

implemented to select starting points for the Nelder-Mead method. This was imple-

mented using the ga function from MATLAB’s global optimisation toolbox (for a

thorough background on the method see e.g. [104]). Each iteration of the algorithm

samples 100 parameter sets, beginning with values taken from a uniform distribution

of parameter values, the limits being±20% of the nominal linear parameter values and

±40% of the nominal BJT parameter values. The objective function value is found for

each set, after which the parameter value set with the lowest corresponding objective

function value is used as the starting point of the Nelder-Mead method. Constraints

were placed on the GA solver to keep parameter values between the limits used for the

original parameter sets, though the Nelder-Mead method was not constrained.

Successive iterations were formed from a combination of crossover and mutation.

Crossover sets are generated by taking two sets from the previous iteration and ran-

domly selecting parameter values from each set. Conversely sets generated using mu-

tation take a single set from the previous iteration and change each value stochastically.

The 5 parameter sets with the lowest objective value roll over to the following
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iteration without alteration. Of the remaining sets, 70% are taken from the crossover

sets, and 30% are taken from mutation. As the sets which have been optimised using

the Nelder-Mead method are likely to be the lowest for following iterations, these sets

are prevented from repeatedly seeding the Nelder-Mead algorithm. Should the result

of the Nelder-Mead method not be lower than the previous result for 5 iterations, the

optimisation process is terminated assuming that the probability of finding a lower set

is small.

6.2 Analysis of the optimisation problem

6.2.1 Validation on simulated data

Prior to attempting to model a real circuit from measurements it is useful to first iden-

tify a system that is the model itself, i.e. generate simulated measurements from the

model to use in the identification. Simulated measurements are free from noise and are

guaranteed to be able to be fit by the model, providing an extreme best-case scenario

for what the results of the optimisation on the real circuit may be.

A single optimisation process was run using the Nelder-Mead algorithm using mea-

surements generated with the stochastically sampled parameters from Table 6.1. Initial

parameter values were taken from a uniform distribution with identical ranges as used

for the parameters values used in the model that generated the data.

Figure 6.2 shows a contour plot consisting of the objective function values of a set

of windowed sinusoidal signals with different amplitudes and frequencies. The ampli-

tude and frequency ranges have been extended over that used with the excitation signal

to ensure that the model still performs adequately in regions not explicitly covered in

the specified ranges. The new ranges are 20− 3000 Hz and 0.1− 3 V, each signal still

windowed with a Hann window and with a duration of 200 ms.

The left-hand plot shows the fit between the simulated measurements and the model

using the initial parameter values. The right-hand plot instead uses the resulting pa-

rameter values from the Nelder-Mead optimisation. Values of ξ are approximately 8

orders of magnitude smaller for the optimised parameters than the initial parameters,

indicating a successful capture of the simulated behaviour across the desired range of

operation.
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Figure 6.2: Validation of the Dallas Rangemaster optimisation using simulated data.

The displayed surface represents the value of ξ for windowed sine waves of different

amplitude and frequency, the left using a model with random initial parameter values,

and the right using optimised values.

6.2.2 Parameter screening

The number of dimensions in the search space that is traversed by the optimisation

algorithm is determined by the number of parameters in a model. In the previous chap-

ter it was demonstrated that reducing the search space by one dimension a reduction

in computation time could be achieved with a trade-off for the optimised objective

function value. This approach is applied to the Dallas Rangemaster, using the EET to

screen the 12 parameters.

Figure 6.3 contains the EET of the OC44 Rangemaster using the same method as

described in Chapter 5 with r = 300. Parameters display a wide range of sensitivity

indices, with several appearing relatively insensitive.

To compare the effects of fixing parameter values, three boxes have been placed

around clear groups of parameters that are visually clustered, from which 4 different

combinations are formed from fixed and variable parameters. A control ‘combination’

is included which uses all of the parameters. Two of the combinations fix the least

sensitive parameters and leave only the parameters which the objective function is most

sensitive to: the top 7, and the top 3. Finally to provide some context as to the effect

of the number of parameters optimised and the sensitivity of the objective function to

those parameters, the middle 4 parameters are chosen as the last combination. Each of
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Figure 6.3: EET performed on the Dallas Rangemaster OC44 objective function, r =

300. Parameters have been boxed to indicate the selected groupings for screening.

these groups are to be compared in Section 6.3.2 for the computation time and resulting

values of ξ of multiple optimisations using the Nelder-Mead algorithm.

6.3 Results and validation

Using the measurements taken from the Dallas Rangemaster, identification of the cir-

cuits was performed using the GA solver and Nelder-Mead algorithm. The resulting

objective function and parameter values from the optimisations are displayed in Table

6.2. The OC44 Rangemaster is the primary objective for the identification. The result-

ing value of ξ does not reveal a significant amount of information as to the results of

the optimisation. To expand upon the fit to the model validation results are displayed

in Figure 6.4. The left plot shows the fit of the model with initial parameter values and

the right shows the equivalent with the optimised parameter values. Clearly the change

in fit is markedly increased across the desired range of operation.

Though an increase in fit to circuit behaviour has been observed, comparing the

final parameter values in Table 6.2 to their measured equivalent in Table 6.1 it is clear

the parameters have not converged. Accurate parameter values are not the primary

objective, but this result does suggest parameter redundancy which could indicate the

suitability of fixing parameters to reduce computation time. A parameter that the ob-

jective function is notably insensitive to is C2, which has decreased in value by over 20

orders of magnitude. This finding correlates with the EET that placed C2 in the group
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Table 6.2: Final objective function and parameter values for the OC44 and BC557

Rangemaster circuits.

OC44 BC557

Final ξ 1.476e-3 4.587e-3

R1 2.061 MΩ 107.9 kΩ

R2 52.45 kΩ 43.52 kΩ

R3 635.1 Ω 9.571 kΩ

R4 96.75 kΩ 3.314 MΩ

Ro 35.87 kΩ 10.56 kΩ

C1 5.842 nF 9.887 nF

C2 62.52× 10−27 F 35.74 µF

C3 78.51 nF 4.111 nF

Is 4.284 µA 318.8× 10−21 A

N 0.8434 1.432

βf 15.41 174.5

βr 1.264 113.3

of parameters of which the objective function is least sensitive.

Sound examples for the Rangemaster models and circuit can be found online1 for

readers to further asses the success of the calibration.

6.3.1 OC44 vs BC557 comparison

Comparing the final values of ξ between OC44 and BC557 Rangemaster circuits, the

fit of the germanium OC44 is approximately 3 times better than the silicon BC557.

Validation maps for the BC557 are displayed in Figure 6.5. The minimum of the OC44

map is at a lower value than the minimum of the BC557 map as might be expected

given their respective optimised values of ξ. Further the overall fit of the OC44 map is

better over much of the range of operation.

To further investigate the differences in fit it can be of use to directly inspect a

waveform. Figure 6.6 shows a sample of Rangemaster output when driven by the exci-

tation signal, for the circuit and model of both the OC44 and BC557. The middle plots

report the error between measured and modelled signals and lower plots the spectro-

gram of this error, both of which again indicate a higher amount of error for the BC557

1https://bholmesqub.github.io/thesis/chapters/calibration/

123



Chapter 6. Calibration of the Dallas Rangemaster model

1 2 3

102

103

Fr
eq

ue
nc

y 
(H

z)

1 2 3

10-3

10-2

10-1

Figure 6.4: Error between measured and modelled output of the OC44 Rangemaster in

response to windowed sine waves at different amplitudes and frequencies. (left) Model

uses nominal parameter values, (right) model uses optimised parameter values.
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Figure 6.5: Error between measured and modelled output of the BC557 Rangemaster

in response to windowed sine waves at different amplitudes and frequencies. (left)

Model uses nominal parameter values, (right) model uses optimised parameter values.
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Figure 6.6: Comparison of a high-error section of the output of the Rangemaster when

driven with the excitation signal, for both OC44 and BC557 BJTs. (top) Output volt-

ages, measured and modelled, (middle) error between measurement and model, (bot-

tom) spectrogram of error.

than the OC44. Though both circuits are driven by the same signal there is an obvious

difference between outputs. The BC557 circuit exhibits a higher gain that is observable

through the fast transitions between the saturation regions at the top and bottom of the

signals. These fast transitions cause large spikes in the error which points to a failure

to capture the high frequency behaviour of the circuit as suggested by the spectrogram

in the lower plot. Results of Chapter 2.1.1 indicated that the capacitance across the

BJT junctions causes a change in high frequency response in the Rangemaster which

could be a cause to the mismatch in high frequency here.
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6.3.2 Parameter screening

The results of 20 optimisations performed using 4 different groups of parameters are

displayed in Figure 6.7. Computation time was measured using MATLAB’s cputime

function as used in the previous chapter. The mean final objective function value has

increased only a small amount between optimising all of the parameters and only using

the top 7, though the mean computation time has reduced by more than double. Further

reducing the group to only the top 3 parameters significantly increases the mean final

objective function value, with a similarly extreme reduction in computation time. The

last group included in the experiment is the middle 4 parameters. This group is placed

between the top 3 and top 7 for both iterations and final objective function value.

To validate the investigation into parameter screening, the sine wave maps of the

models using the closest-to-mean set of parameters for each of the four groups is il-

lustrated in Figure 6.8. Generally the sine wave maps correlate with the mean final

values of ξ. As might be expected the surface generated using all parameters has the

lowest point, though when using the top 7 parameters a better fit is achieved in the low

amplitude region.

6.4 Conclusion

This chapter has presented a calibration of the Dallas Rangemaster Treble Booster

guitar pedal circuit. The identification was successful in that a significant increase in

fit between the measurements from the OC44 circuit and model can be observed when

comparing the model from before to after calibration.

A comparison between a silicon and germanium Rangemaster was also presented

between the germanium OC44 and silicon BC557 BJTs. The identification of the

circuit using the BC557 was less successful than that of the circuit using the OC44.

A hypothesis of Chapter 4 was that a silicon BJT would be easier to identify within a

circuit as the behaviour is closer to the ideal behaviour as represented by the Ebers-

Moll model. This has shown to not necessarily be true because the OC44 Rangemaster

achieved a lower final value of ξ than the BC557 Rangemaster, as well as a general

better fit across the range of operation as shown by the validation maps. A caveat

for this result is that as the gain of the OC44 is lower than that of the BC557 less

high frequency distortion is present in the excitation and validation signals which may

make it easier for the model to fit the measurements. Should the BC557 Rangemaster

have been driven at a lower amplitude it is possible a similar level of fit to the OC44
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Figure 6.7: Iterations to complete optimisation vs final ξ value for the 20 optimisations

of the germanium Rangemaster with different fixed parameters. Four combinations

are presented using the groupings from the EET: all parameters, the top 7 and top 3

parameters, and the middle 4 parameters.
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Figure 6.8: Comparison of models using optimised parameter values where different

numbers of parameters were optimised. The displayed surface represents the value of

ξ for windowed sine waves of different amplitude and frequency.
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Rangemaster would have been achieved.

Additionally, as parameter values are not of interest in calibration, the potential

non-ideal behaviour of the OC44 may have been compensated for by adapting the

rest of the circuit’s behaviour. This would mean that the BJT is still more difficult

to identify within a circuit, but that the Rangemaster contains sufficient flexibility to

compensate, and that it is easier to compensate for the OC44 than the BC557.

Through parameter screening an evident speed-up in the optimisation has been ob-

served. By fixing 5 parameters the computation was reduced on average by more than

half, with a marginal increase in mean error. Validation maps of the model when all pa-

rameters are optimised and when only the top 7 parameters are optimised showed com-

parable fit across the full region of operation though with the model with all optimised

parameters exhibiting the better fit. This result suggests that screening parameters is

a useful strategy to apply when calibrating circuit models, and recalling the marginal

reduction in computation time of the single sided diode clipper from Section 5.3.1,

further implies that when working with circuits with a higher number of parameters it

could have even more importance.

Comparing the middle 4 parameters to the top 3 parameters revealed that although

the sensitivity of the objective function to a parameter may be important, in this case

the number of parameters optimised is more significant. Both the final objective func-

tion values and validation maps revealed that the model using parameter values of the

optimised middle 4 parameters achieves a better fit than that of the model using the

optimised values of the top 3 parameters.

128



Chapter 7

Parameter estimation of tone stack
and common-emitter circuits

Parameter estimation here describes the process of retrieving accurate parameter values

of physical component models through the identification of a circuit. This objective

is motivated by the wide applicability of the results: should the parameters of the

constituent components be accurate, these components can be combined in different

ways while maintaining an accurate emulation of the circuit’s behaviour.

An immediate example of this is the cascading of guitar pedals, where each pedal

effectively becomes a subcircuit of the signal chain. Should accurate parameters be

available, the changes in input/output impedance when pedals are connected are imme-

diately accommodated for. Recalling the changing of the load of inaccurately estimated

parameters in Section 5.3.2, even if the individual pedal’s behaviour is reproduced to a

high degree of accuracy, unless the parameter values are accurate changing the load of

the circuit can introduce significant error.

Two case studies are selected to which parameter estimation is applied: the tone

stack from a mid-90s iteration of the Vox AC30 guitar amplifier (the complete schematic

of which is shown in Appendix C) , and a generic common-emitter amplifier. The tone

stack is assumed to be a linear circuit which alleviates several difficult issues around

identifying nonlinear circuits e.g. the higher complexity of nonlinear component mod-

els and potential aliasing introduced by distortion. By choosing a linear circuit the

objective is to provide a point of comparison for the nonlinear case to qualify the dif-

ference in difficulty.

The common-emitter amplifier is again selected – though not the Dallas Range-

master – to cover the case of a circuit exhibiting nonlinear behaviour that produces

pronounced distortion. In Chapter 6 an instance of this circuit was successfully iden-
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tified with the results producing a model that captures the input/output behaviour over

a range of input signals. The question remains as to whether parameter values can be

estimated for the circuit such that the circuit can be modified without introducing error

to the corresponding model.

A procedure using elements from Chapter 5 is applied. Results are analysed by

directly inspecting the retrieved parameter values, and also by changing the load of the

case studies. One notable change is the extension to measurements of a real circuit as

opposed to only simulations, which requires considerable additional effort to compen-

sate for non-ideal effects caused by the measurement equipment. This compensation

is performed as a part of the initial model design.

7.1 Model design

In contrast to the design of the circuit model used in Chapter 6, the design of the model

used for identification here is a heavily involved process. The models must contain

suitable components of known value to alleviate possible parameter redundancy as

observed in Section 5.1.3.

Potential model failures as observed in the high frequency behaviour of the BC557

Rangemaster (Section 6.3.1) could prevent parameter values from converging to cor-

rect values, motivating the inclusion of components that model the non-ideal behaviour

in the measurement equipment such that error between circuit and model can be di-

rectly attributed to a failure in the model. First, to provide a target for the identification,

the parameters are selected and measured.

7.1.1 Parameterisation

As with the calibration of the Rangemaster, the two case studies in this chapter are

designed on a breadboard to facilitate direct measurements of component parameters.

An LCR meter was purchased to provide accurate measurements of component pa-

rameters, the DER DE-5000. By purchasing a new unit the meter will be within the

tolerances specified by the factory calibration, enabling a qualification of the accuracy

of the measurements. The selected meter also features a self-calibration feature de-

signed to factor out the capacitance/resistance/inductance of the test probes, further

minimising the error introduced to the measurement.

Each linear component was measured immediately prior to the capture of the iden-

tification signals, minimising any change in circuit behaviour related to temperature

fluctuations that occur over time.
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Figure 7.1: Tone stack schematic from the Vox AC30 labelled with nodal indices and

known output components Cko and Rko.

Tone stack

The schematic of the tone stack from the Vox AC30 amplifier is shown in Figure 7.1.

The circuit consists of 4 resistors, 2 of which are potentiometers controlling the treble

and bass of the output, and 3 capacitors. Each component is modelled with a single

parameter resulting in the vector

θts = [R1 Rt Rb R2 C1 C2 C3], (7.1)

of dim(θts) = 7.

To model the position of the potentiometers two control variables are introduced: t

for the treble potentiometer Rt and b for the bass potentiometer Rb. A second variable

is defined as t̄ = 1 − t to note the remaining resistance on the second resistor used to

model the potentiometers. These control variables are not parameters, and are not the

target of the identification. Estimating the position of the potentiometer wiper along

the track is beyond the scope of this work which is strictly to estimate the compo-

nent parameters, and therefore the potentiometer is fixed in places that are assumed as

known: at the extreme ends of the track. These positions correspond to 0 and 1 for t

and b, but inherent resistance in the wire, terminals and wiper of the potentiometer will

be non-zero so these values are approximated for the low end as tl = bl = 1× 10−5

and for the high end th = bh = 1− 1× 10−5.

From the original schematic (shown in Appendix C) the specified parameter values

are shown in Table 7.1. Direct measurements of each component are shown with their
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Table 7.1: Component parameters of the tone stack, from left to right: component sym-

bol and units, component material, specified parameter value from schematic, directly

measured value from LCR meter and tolerance of the measurement.

θts Unit Material Spec. Direct Tol.

R1 kΩ Metal Film 100 99.35 ±0.52%

Rt MΩ Conductive Plastic 1 1.023 ±1.03%

Rb MΩ Conductive Plastic 1 0.934 ±1.03%

R2 kΩ Metal Film 10 9.947 ±0.32%

C1 pF Mica 56 56.84 ±1.28%

C2 nF Polypropylene 22 21.65 ±0.39%

C3 nF Polypropylene 22 21.93 ±0.39%
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Figure 7.2: Schematic of the common-emitter amplifier labelled with nodal indices

and additional known components Rko and Cko.

respective tolerances as derived from the LCR datasheet1. Materials are also noted as

non-ideal behaviour is typically related to this property. Although the LCR meter does

provide the function of measuring secondary parameters (e.g. series resistance with a

capacitor) these values have been omitted as the focus of this initial study is to achieve

the highest accuracy with only single parameter linear component models.

Common-emitter amplifier

The specific schematic of the common-emitter amplifier identified in this chapter is

shown in Figure 7.2, including the specific known components that will be discussed

1https://bholmesqub.github.io/thesis/files/DE-5000.pdf
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Figure 7.3: An equivalent circuit model of the DAQ used to measure each circuit, re-

lating analogue output Vao to input Vai. Grey components mark the series resistance

used to estimate the capacitance of the DAQ, and the parasitic capacitance of the bread-

board.

in the following sections. The parameter vector θce is different from that of the Range-

master in the previous chapter in that the resistor at the output is assumed to be known,

reducing the vector to

θce = [R1 R2 R3 R4 C1 C2 C3 Is N βf βr] (7.2)

which again uses single parameter linear components and the Ebers-Moll BJT model,

with dim(θce) = 11.

Linear component parameter values were taken from the Rangemaster circuit with

one change: C2 was dropped from 47 µF to 1 µF to enable the selection of a non-

polarised capacitor. This decision was made to allow better flexibility for values of Vc,

to use an inverted supply voltage may have damaged a polarised capacitor.

Specified and measured values of the linear component parameters are shown in

Table 7.2. Again the tolerances of the LCR meter are displayed and secondary param-

eters are omitted.

The BJT selected for the circuit is the 2N3906 silicon BJT, with the ‘specified’

parameter values in Table 7.2 taken from LTspice. A silicon BJT was selected for

temperature stability such that if multiple measurements are to be average the self-

heating of the BJT will have less of an impact.

7.1.2 Measurement calibration and compensation

The measurement device used in this chapter is the National Instruments USB-6251

DAQ. Specified in the datasheet2 are 3 parameters for the input and output impedances

of the analogue connections: the analogue output has a series resistance Rao = 0.2 Ω,

and the analogue input has a parallel impedance of Rai > 10 GΩ and Cai = 100 pF.
2https://bholmesqub.github.io/thesis/files/NI_6251.pdf
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Table 7.2: Component parameters of the common-emitter amplifier, from left to right:

component symbol and units, component material, specified parameter value from

schematic, directly measured value from LCR meter and tolerance of the measure-

ment.

θce Unit Material Spec. Direct Tol.

R1 kΩ Metal film 470 467.4 ±1.06%

R2 kΩ Metal film 68 68.16 ±0.52%

R3 kΩ Carbon film 3.9 3.834 ±0.35%

R4 kΩ Metal film 10 9.998 ±0.32%

C1 nF Polypropylene 4.7 4.562 ±0.34%

C2 nF Ceramic 1000 956.4 ±0.32%

C3 nF Polypropylene 10 10.202 ±0.32%

Is pA - 10 - -

N - - 1 - -

βf A/A - 200 - -

βr A/A - 4 - -

Quickly inspecting the case study circuits it can be seen that the value of Rao will

have little effect on the behaviour of both circuits. The minimal impedance to ground

of both circuits is at least 4 orders of magnitude higher. The same can be assumed for

Rai which is 3 orders of magnitude higher than the largest series impedance. The high

series resistance caused by Rt in the tone stack may form a low-pass filter with Cai,

with a cutoff frequency of approximately 1591 Hz, which would have a notable effect

upon the transfer function of the circuit. For this reason the Cai warrants measurement

to compensate for when measuring the case studies.

To measure Cai a series resistance of R1 = 2 MΩ was placed on a breadboard

between the output and input of the DAQ, as pictured in Figure 7.3. The transfer

function was found by driving the circuit with an excitation signal with the parameters

fs = 1 MHz, Ns = 1× 106, dl = 1 and dh = 200× 103 which results in a 1 s signal

with frequencies between 1 Hz− 200 kHz. The resultant transfer function is displayed

in Figure 7.4.

Designing a physical circuit model where the value of R1 is known and assuming

that Rai = 10 GΩ and Rao = 0 then produces a 1D identification problem, θdq = Cai.

During an initial test of the DAQ system the input was connected directly to the output

with no load, and a transfer function was taken. The amplitude response of this test
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was flat except for uncorrelated noise, but in the high frequency region of the phase

response a systematic curve error was observed. For this reason the data used in the

identification was exclusively the amplitude response.

Optimising the model with the Nelder-Mead simplex algorithm as implemented in

MATLAB’s fminsearch [92] with the initial value of Cai = 100 pF produces an

optimised value of Cai = 56.86 pF. This result is shown in Figure 7.4 by the curve

marked RC.

At high frequencies the RC circuit model deviates from the measurement indicat-

ing additional effects. One likely component of this is parasitic capacitance of the

breadboard, caused by the parallel plates used to connect the components. Adding

Cp as shown in Figure 7.3 attempts to model this effect, extending the parameters to

θdq = [Cai, Cp]. Optimising this model using initial values of Cai = 56.86 pF and

Cp = 1 pF results in Cai = 56.25 pF and Cp = 680.35 fF.

The results of the RC circuit with the parasitic capacitance is shown again in Fig-

ure 7.4. The error in the amplitude response has been reduced over that of the RC

without the parasitic capacitance, but additional error has been introduced to the phase

response. This indicates that there is behaviour in the circuit that is not being ade-

quately captured.

To determine the exact cause of the behaviour of the circuit would require a signif-

icant further time investment in the study and not necessarily provide a useful result.

As a first approximation of the measurement equipment Cao will be included in both

circuit models, but careful attention must be paid to the high frequency content of the

measured signals to ensure that particularly the unidentified behaviour in the phase re-

sponse does not reduce the accuracy of the identification procedure. The capacitor at

the output is present in the schematic of both case studies marked as Cko for the known

output capacitance.

7.1.3 Circuit analysis and modelling

Tone stack

The linear tone stack can be modelled using a transfer function as has been previously

applied to the RC circuit in Chapter 5. One adaptation is required in that the tone stack

features two potentiometers. As mentioned during the discussion of the tone stack’s

parameterisation, the control variables will each have 2 positions producing in 4 possi-

ble combinations of potentiometer positions, resulting in 4 different transfer functions.

Each different transfer function is treated as a static snapshot of the behaviour of the
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Figure 7.4: Plot of amplitude and phase response of the DAQ with a 2 MΩ resistance

placed between output and input. Two models have then been fit, and RC circuit and

an RC circuit with a parasitic capacitance Cp across the resistor, their error shown in

the right plots.
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circuit, combined into a single data set as described further in Section 7.2.

A conclusion from Chapter 5 was that by introducing a component of known value

into the circuit parameter redundancy could be alleviated. As the capacitance of the

DAQ input has been added to the model to compensate for any change in measured

behaviour, this known component already exists. However the circuit must still be

checked for parameter redundancy.

Visually inspecting the schematic reveals two components of the same impedance

in parallel without other connections: R2 and b̄Rb. Should it be the case that b = 1 then

parameters R2 and Rb would not be estimable as they only appear in parallel. Should

b = 0, R2, node 6 is shorted to ground and therefore R2 has no effect over the circuit

behaviour making said parameter inestimable. Using multiple values of b will change

the value of the combination, ensuring there are at least two different equations for the

two parameters. This factor must be remembered during the measurement procedure.

The Laplace form of the transfer function contains 7 terms resultant of many oper-

ations upon the constituent parameters. To simplify the parameter redundancy analysis

the reduced MNA form can be used. Conductances for the different cases of resistors

and potentiometers are defined as GR = 1/R, GRt = 1/tRt and GRt̄ = 1/t̄Rt (and

equivalently for the bass potentiometer). The reduced MNA form is then given by:

GR1 0 0 −GR1 0 0

0 GRt̄ −GRt̄ 0 0 0

0 −GRt̄ GRt̄ +GRt +GRko 0 −GRt 0

−GR1 0 0 GR1 0 0

0 0 −GRt 0 GRt +GRb −GRb

0 0 0 0 −GRb GRb̄ +GR2 +GRb





Vi

V2

V3

V4

V5

V6



+



C1 −C1 0 0 0 0

−C1 C1 0 0 0 0

0 0 Cko 0 0 0

0 0 0 C2 + C3 −C2 −C3

0 0 0 −C2 C2 0

0 0 0 −C3 0 C3





V ′
i

V ′
2

V ′
3

V ′
4

V ′
5

V ′
6


=



0

0

0

0

0

0


.

(7.3)

The exhaustive summary is given by

κ(θts) = [GR1, GRt̄, GRt̄ +GRt, GRt, GRt +GRb GRb,

GRb̄ +GR2 +GRb, C1, C2, C2 + C2, C3],
(7.4)

which upon testing yields the rank(J(κ)) = 7 and therefore each parameter is es-

timable. Parameter redundancy was revealed in the previous chapter by dividing the

137



Chapter 7. Parameter estimation of tone stack and common-emitter circuits

whole model by one parameter to produce terms without any parameters. In this case

as a Cko and Rko are already included, any operation to remove a parameter would

combine with these known values and as such no parameter redundancy is present in

the model.

The redundancy analysis is then repeated using upon the form of the model that will

be used in the simulation of the circuit, in this case a transfer function. The transfer

function of the tone stack is of the form

H(s) =
b3s

3 + b2s
2 + b1s

a4s4 + a3s3 + a2s2 + a1s+ 1
, (7.5)

where coefficients have been normalised by a0 to remove one coefficient from the

vector thus maximally simplifying the transfer function. This has a corresponding

exhaustive summary of

κ̂(θts) = [b3, b2, b1, a4, a3, a2, a1]. (7.6)

Immediately it is clear that it is possible for the model to have estimable parameters as

the length of the exhaustive summary is the same as that of the parameter vector. The

full coefficients are omitted due to their complexity. Inspecting the determinant of the

Jacobian results in rank(J(κ̂)) = 7 confirming that each parameter is estimable using

the transfer function model.

Having compensated for the measurement equipment by setting Cko = Cai and

verifying that each parameter is theoretically estimable, the model is now suitable to

test with simulated measurements to determine whether the parameter values can be

retrieved from an ideal identification scenario.

Common-emitter amplifier

A state-space model is selected to model the common-emitter amplifier. The volume

potentiometer in the previously modelled common-emitter amplifiers is treated as fixed

at maximum volume and therefore needs no further consideration as required for the

tone stack. To ensure the model is suitable for identification all that remains is the

verification that each parameter is estimable.

No obvious redundancy is clear from visually inspecting the schematic, so the
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model can be checked symbolically. The reduced MNA model is given by

0 0 0 0 0 0

0 GR1 +GR2 −GR1 0 0 0

0 −GR1 GR1 +GR4 −GR4 0 0

0 0 −GR4 GR4 0 0

0 0 0 0 GR3 0

0 0 0 0 0 GRko





Vi

V2

Vc

V4

V5

V6



+



C1 −C1 0 0 0 0

−C1 C1 0 0 0 0

0 0 0 0 0 0

0 0 0 C3 0 −C3

0 0 0 0 C2 0

0 0 0 −C3 0 C3 + Cko





V ′i

V ′2

V ′c

V ′4

V ′5

V ′6


=



0

−Ib

0

−Ic

Ib + Ic

0


,

(7.7)

with a corresponding exhaustive summary of

κ(θce) = [GR1 +GR2, GR1, GR1 +GR4, GR4, GR3, C1, C3, C2,

Is/βf , Is/βr, Is, Is(βr + 1)/βr, N ]
. (7.8)

Testing the rank of the Jacobian reveals rank(J(κ)) = 12, indicating that each

parameter is estimable. Again, with the inclusion of a known component if the model

is scaled by a parameter, that parameter combines with the known component and as

such there is no parameter redundancy to be revealed. This can be further investigated

on the state-space model. To simplify the analysis let the coefficients of the Ebers-Moll

exponentials be denoted in matrix form as

L =

[
Is/βf Is/βr

Is Is(βr + 1)/βr

]
, (7.9)

such that

κ̂(θce) = [A, B, CL, D, E, FL, G, H, KL, N ]. (7.10)

All zero value entries can be removed as with duplicate terms. Testing the rank of

Jacobian reveals rank(J(κ̂)) = 12, confirming that each parameter is estimable for

this state-space model of the common-emitter amplifier.

Having determined that the common-emitter amplifier has theoretically estimable

parameters and features compensation of the measurement equipment, the model is

now suitable for testing with simulated measurements.
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7.2 Optimisation formulation

For both case studies the Nelder-Mead simplex method is used to optimise the model

with the objective function as defined in (5.37). As the data sets are made up of multiple

signals/transfer functions, the definition is extended such that

ξ(θ̂) =
M∑
m=1

(
1

ηm

Ns−1∑
n=0

εm(n, θ̂)2

)
, (7.11)

where m is the index of the signal/transfer function within a set of M signals/transfer

functions.

The central challenge in designing a successful identification procedure lies in the

capture of sufficient behaviour in the excitation signal such that the final estimated

values of each parameter are accurate with respect to the directly measured values.

With the case studies in Chapter 5 the number of parameters was low enough that only

a coarse design was required to produce excellent results, but as the case studies in this

chapter have more parameters the challenge is increased.

7.2.1 Excitation signal

Tone stack

The excitation signal for the tone stack was designed to provide a set of transfer func-

tions that could be directly compared with the model as opposed to time domain sig-

nals. To maximise resolution a high sample rate was chosen, fs = 1 MHz, and a

1 s signal was generated with Ns = 1× 106 so that the minimum captured frequency

was 1 Hz. Empirically it was found that including frequencies close to DC improved

the convergence of parameter values, motivating the choice of capturing the behaviour

over 4 octaves beneath the commonly stated limit of human hearing. Values of dl = 1

and dh = 20× 103 defined a set of frequencies from 1 Hz − 20 kHz. A peak voltage

was chosen to correspond with the amplitude used by the LCR meter, Vp = 0.5 V.

The inverse of the simulated transfer functions was applied as a frequency amplitude

envelope to maximise SNR across the measured range.

At the time of the research the values of Ad used in the multi-sine excitation signal

were not modified to ensure that their sum is equal to 1. Instead they were normalised

using Ns/
√
dh − dl, which provided a signal with a standard deviation that is constant

and independent of the signal parameters. If
∑dh

d=dl
Ad 6= 1 then there are scenarios

in which a high crest-factor can arise, but for the excitation signal used in this work
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Figure 7.5: Amplitude responses of the different potentiometer positions, subscript h

marking a position close to 1 and l close to 0. The solid line responses useCko = 56 pF

and dashed lines use Cko = 56 pF + 4.7 nF.

– prior to the application of the Hann window – the crest factor was 3.36 indicating a

low peak-to-peak voltage.

As with the excitation signal in Chapter 6, amplitudes were not chosen to satisfy∑dh
d=dl

Ad = 1, but instead scaled using Ns/
√
dl − dh. The excitation signal for the

tone stack has a maximum crest factor of 4.7592 and 2.7843 with and without the

inverse transfer function weighting, respectively.

To mitigate potential high-frequency error observed in the DAQ, two adaptations

were made. The first is that the objective function uses only the magnitude of the trans-

fer function, such that in (5.37) and (5.38) y = |H(jωn)|. By only utilising the ampli-

tude response the disparity between high frequency amplitude and phase responses ob-

served in the measurement equipment is circumvented. In addition to this, a capacitor

of value 4.7 nF was placed across the output terminal, resulting in Cko = Cao +4.7 nF.

The increase in capacitance reduces high frequency amplitude in the transfer function

when t = tl, which will reduce the amount of potential error in the objective function.

Figure 7.5 shows the difference in simulated amplitude response between using just

the capacitance of the DAQ and using the additional output capacitor, reducing high

frequency amplitude for each transfer function.

Additional samples were removed from the tone stack transfer functions, with

samples above 20 kHz removed and the resulting transfer function then downsampled

such that only 256 points remained, spaced logarithmically over the defined frequency

range. For the transfer function of the measured tone stack circuits a further 6 samples
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were removed, 4 from around 50 Hz and 2 more from 100 Hz due to the high amount

of noise likely caused by proximity to mains power circuits.

Common-emitter amplifier

In a similar manner to the 4 combinations of potentiometer positions for the tone stack,

4 different excitation signals were designed for the common-emitter amplifier. Each

signal was designed to expose different behaviour of the amplifier to provide options

when identifying the model using simulated measurements: should one signal not be

sufficient a combination can be used.

Table 7.3 show the signal parameters for the 4 different excitation signals. The sim-

ulated output measurements of the common-emitter amplifier are displayed in Figure

7.6.

Two major differences exist between the set of signals: two different supply volt-

ages are used, and for each different supply voltage one signal has a low amplitude and

wide bandwidth, and the other a high amplitude and narrow bandwidth. Two different

supply voltages were used to change the bias of the BJT, trying to better expose it’s

behaviour over a range of operating conditions. The other differences were chosen to

capture different aspects of the circuits behaviour.

Selecting a low amplitude and wide bandwidth signal provides a result akin to

a transfer function. An attempt was made at measuring the transfer function of the

circuit, but due to it’s distortion and high noise floor an excitation could not be designed

that captured a transfer function in the same way as the tone stack was measured. The

high amplitude signal was chosen to ensure the distortion of the circuit was captured

as it is a critical sonic characteristic, as well as providing significant information about

the behaviour of the BJT. For this signal the bandwidth was reduced to prevent aliasing

in the measurement or model (the selected DAQ features no anti-aliasing filter). Signal

length was reduced to compensate for the high sample frequency required to reduce

aliasing.

Optimal performance was found from the DAQ at fs = 1 MHz but this sample rate

is not necessarily ideal for the identification, so downsampling was performed on the

low amplitude signals which had lower bandwidth due to less high frequency distortion

resulting in f̂s. To compensate for high frequency discrepancies between circuit and

model, and to a lesser extent low frequency noise, output signals were filtered with

a bandpass filter consisting of both a 2nd order Butterworth low pass and high pass

filter, the high pass cutoff frequency noted by ωc1 and the low pass cutoff noted by ωc2.

Both filters were applied in the objective function such that y = l(Vo) where l is the
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Table 7.3: Specification of the signals used for the Common-Emitter amplifier.

# f̂s Ns Dur. Vc fl fu dl du Vp ωc1 ωc2

(MHz) (s) (V) (Hz) (kHz) (V) (Hz) (kHz)

1 1 20× 103 0.02 -9 50 2 10 400 3 50 4
2 0.1 100× 103 1 -9 1 20 1 20× 103 0.6 1 30
3 1 20× 103 0.02 -5 50 2 10 400 3 50 4
4 0.1 100× 103 1 -5 1 20 1 20× 103 0.6 1 30

bandpass filter.

In the calibration of the Rangemaster, a windowed signal was used to ensure dif-

ferent signal levels were represented. As a combination of signals with different am-

plitudes is possible for this identification task a window is not necessary and therefore

not applied.

Weighting was applied to the sine components to produce a flat output amplitude

response. For the low amplitude signals this was simply the inverse transfer function

found from the model using the measured linear component values and specified BJT

values. For the high amplitude signal the inverse transfer function was weighted and

scaled such that

Ad = 1 +
(
1− 10−4

) (∣∣∣Ĥ(jωd)−1
∣∣∣− 1

)
, (7.12)

where Ĥ(jω)−1 is the inverse transfer function normalised such that its largest magni-

tude is 1. Scaling the inverse transfer function prevents low frequencies from dominat-

ing the signal which as the signal is a higher amplitude, could cause distortion products

to overwhelm other behaviour of the circuit at higher frequencies. The amplitudes were

then scaled by Ns/
√
dl − dh resulting in a maximum crest factor of 2.4381 and 2.7210

with and without the application of the inverse transfer function respectively.

7.2.2 Data set selection

Having designed a dataset consisting of candidate excitation signals and their cor-

responding output/transfer function measurements, it must then be determined what

combination of data provides the optimal identification results. The criteria for a suc-

cessful identification are not only retrieving parameter values, but being able to repeat-

edly retrieve the parameter values for different initial parameter value sets.

Simulated measurements of the different combinations are used to ascertain the

which combination will provide the lowest values of mean parameter error 〈εθ〉 for both

models. By discovering the optimal combination prior to measurements it is possible
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Figure 7.6: Simulated measurements of the common-emitter amplifier. The left plot

shows the amplitude spectrum of the low amplitude signals 2 & 4, the right plot the

high amplitude signals 1 & 3 in the time domain.
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Vi Vo

Figure 7.7: Signal diagram depicting how AWGN is applied to simulated measure-

ments.

that some signals will not require measuring, reducing the work required to identify

each circuit. Simulated measurements have been shown in Chapter 5 to achieve a high

degree of accuracy when estimating parameter values, likely more than is achievable

when working with measured signals. To better predict the parameter accuracy when

using real measurements, Additive White Gaussian Noise (AWGN) is applied to all

simulated measurements as depicted in Figure 7.7. By including a non-ideal feature

of the measurement the objective is to better approximate a real measurement which

will thus yield a better prediction as to the resultant values of 〈εθ〉. The prediction

of parameter accuracy is validated through comparison to actual measurements in the

following section.

Tone stack

Four transfer functions exist for the tone stack as defined by the possible combinations

of potentiometer positions. Noted during the model design of the tone stack, should
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10-10

10-5

100

Figure 7.8: Box plot demonstrating the inability of to retrieve tone stack parameters

when only using one transfer function, comparing each of the four possible single

transfer functions with one case using two transfer functions. 30 optimisations are

performed on each combination of transfer functions.
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the potentiometer control b only be in one position, possible potentiometer redundancy

is introduced. Figure 7.8 demonstrates this redundancy through optimising the model

using each single transfer function, and one combination using two transfer functions.

No AWGN was used to enable minimal values of 〈εθ〉. Exit conditions were specified

as a change in ξ or θts of less than 1× 10−8, and for each combination the optimisation

was repeated 30 times. Median values of each of the single combinations are around

10%, whereas when two different sets of potentiometer positions are used the median

drops to 1× 10−6%, much higher accuracy than achievable with a measurement from

the LCR meter. Evidently parameter values can be retrieved in an ideal situation, but

require more than one combination of potentiometer positions for this tone stack.

The remaining task is to predict the optimal set of transfer functions to find minimal

values of 〈εθ〉 that can be achieved repeatedly. The AWGN applied is characterised

with a zero-value mean and a variance defined using the ‘Random Noise’ standard

deviation specification of the analogue input of the DAQ. To reduce the effect of the

AWGN averaging is employed: the variance of the AWGN is inversely proportional to

the number of averages. The chosen analogue input range of the DAQ is±0.5 V which

is specified to have noise with a standard deviation of σdq = 21 µV, and 60 averages

were used resulting in σ2 = 212

60
µV = 7.35 µV.

The results of 30 optimisations performed on the simulated measurements for the

combinations of multiple transfer functions of the tone stack are shown in Figure 7.9.

The combination with the lowest mean is that using all of the transfer functions as

might be expected. Values of 〈εθ〉 appear to be limited by the amount of noise in the

system, with the trend appearing to converge upon a lower limit. From this result it

is clear that using all of the transfer function is likely to provide the best results when

optimising on measured data. The accuracy of this result and the other data trends will

be investigated by comparing the results with the equivalent results of the measured

data in the following section.

Common-emitter amplifier

To determine which signals should be used to properly expose the behaviour of the

common-emitter amplifier a similar analysis is performed as with the tone stack. An

additional factor must be addressed before performing the combination analysis: alias-

ing. As the common-emitter amplifier model is nonlinear and exhibits significant dis-

tortion, aliasing is bound to be present, even if reduced using anti-aliasing techniques.

When fitting the model to the circuit measurements the aliasing behaviour is unlikely

to match exactly due to the processing present in the analogue input of the DAQ. If
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Figure 7.9: Box plot of optimised parameter error for each theoretically estimable

combination of potentiometer positions for the tone stack. Combinations are noted

by 1: tl, bl, 2: tl, bh, 3: th, bl, 4: th, bh. 30 optimisations were performed for each

combination, the resultant values were averaged across parameters and repeats. Results

are sorted by number of combinations then by median value of 〈εθ〉.

fitting the model to simulated measurements and the signals are sampled at exactly the

same rate and processed identically it is possible for the aliasing artefacts to perfectly

match, achieving a level of accuracy not possible with measurements.

To overcome this problem the simulated measurements can be generated at an over-

sampled sample rate and then downsampled, preventing a perfect fit of aliasing be-

haviour. Figure 7.10 shows the results of 10 optimisations of the common-emitter am-

plifier using the high amplitude input/output signals (those with the highest distortion),

oversampled at five different levels between 1× and 16× before being downsampled

to the original specified sample rate for optimisation. The AWGN is omitted from the

outputs to ensure that the accuracy of 〈εθ〉 is only relative to the oversampling. Without

oversampling, the parameters can be retrieved to a high degree of accuracy. Values of

both 〈εθ〉 and ξ quickly increase to a plateau when oversampling is applied, indicating

that matching aliasing behaviour is required to best retrieve parameter values.

In the prediction of 〈εθ〉 for measurements, to ensure a minimal fit from aliasing

artefacts 16× oversampling was selected for the generation of each signal in the sim-

ulated measurements. AWGN is applied, 30 averages are used and the input ranges

used are different, for the low amplitude measurement ±1 V is used with a standard

deviation of σd = 32 µV, resulting in σ2 = 322

30
µV = 34.1 µV. For the high amplitude

the range was set at ±5 V which has noise with a standard deviation of σd = 140 µV,
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Figure 7.10: Oversampling vs optimised parameter error 〈εθ〉 and objective function

value ξ for the common-emitter amplifier. High amplitude signals 1 & 3 were used in

the optimisation, of which there were 10 repeats for each level of oversampling.

resulting in σ2 = 1402

30
µV = 653.3 µV. The parameters used to find 〈εθ〉 are only

from the linear components: no accurate parameters are available for the BJT so to

predict values of 〈εθ〉 for measurements, they must also be excluded for the simulated

measurement comparison.

Figure 7.11 shows the results of different combinations of the simulated measure-

ments. A similar trend as to the tone stack is observed here with a smaller variance

observed as more signals are included, and generally a lower median value. Two re-

sults that are anomalous to this trend are found in the sets consisting of only 1, and 1

& 3 signals, these signals are the high amplitude signals, for 1, Vc = −9 V and for 3,

Vc = −5 V. Results from optimising only using signal 1 results in a median similar to

that when using all signals, but with a larger variance including results with lower 〈εθ〉.
Using 1 & 3 results in a low variance and median value lower than any other result. To

investigate the difference between optimising using all signals and only using 1 & 3,

both will be compared when optimising on measurements from the real circuit.

7.3 Results and validation

Three areas of results are presented to qualify the success of the parameter estimation

of both case studies. The first area is in how well the simulated measurements predicted

the behaviour of the circuit measurements with regards to the optimised parameter
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Figure 7.11: Box plot of optimised parameter error of 15 repeats for each possible

combination of excitation signals for the common-emitter amplifier. Indices refer to

signal number in Table 7.3: 1 & 2 use Vc = −9 V, 3 & 4 use Vc = −5 V, odd numbers

are high amplitude, even numbers are low amplitude. Box plots are sorted by median

value.

error for each combination of signals. Following this an analysis of the optimised

parameter values found using the chosen combination(s) is performed, determining

the accuracy and reliability of the parameter estimation process. Finally the models

using optimised parameter values are validated by changing the load of the circuit and

model, and checking to see whether additional error is introduced.

Though not discussed within this section, sound examples are provided for readers

to assess the subjective quality of the optimised models, available online3.

7.3.1 Validation of combination selection

Tone stack

The exact same procedure as was used to generate the results in Figure 7.9 was re-

peated, this time using the measured data from the circuit. Figure 7.12 shows the

results for the measured data, sorted using the order from Figure 7.9. Comparing the

results the same trend can be observed that using more combinations generally pro-

duces lower values of 〈εθ〉 with less variance.

The most significant disparity is that for the combinations with the lowest values

3https://bholmesqub.github.io/thesis/chapters/parameter-estimation/sound-examples/
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Figure 7.12: Box plot of optimised parameter error for each possible combination of

potentiometer positions for the tone stack. Combinations are noted by 1: tl, bl, 2:

tl, bh, 3: th, bl, 4: th, bh. 30 optimisations were performed for each combination,

the resultant values were averaged across parameters and repeats. Results are sorted to

match the results of Figure 7.9 to enable easy comparison.

of 〈εθ〉 , the median values for simulated measurements are approximately five times

lower than those of the real measurements. This error indicates that the noise modelling

introduced does not sufficiently capture the various sources of error in the circuit to

predict the results of the parameter estimation to a high degree of accuracy. This may

be due to error such as the systematic high-frequency error observed in Section 7.1.2,

or other sources such as 50 Hz noise transmitted from the mains power sources.

Common-emitter amplifier

The measured counterpart of the signal combination comparison is displayed in Figure

7.13 with the median of the simulated comparison overlayed. The anticipated trend of

reducing median value and variance as the number of signals used in the optimisation

is observed. The anomalous result of using only signal number 1 yielding lower param-

eter error than all signals is not repeated in the measured data, though the combination

of 1 & 3 does yield a similar median parameter error as when using all signals.

The two anamolous results in the simulated measurements are evidence of a signif-

icant difference between model and measurement. From the investigation to the DAQ

behaviour, noteable high frequency phase error was noted, but not compensated for

as the source was unclear. In the transfer function of the tone stack, this was avoided
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Figure 7.13: Box plot of optimised parameter error of 10 repeats for each possible

combination of excitation signals for the common-emitter amplifier. Indices refer to

signal number in Table 7.3: 1 & 2 use Vc = −9 V, 3 & 4 use Vc = −5 V, odd numbers

are high amplitude, even numbers are low amplitude. Box plots are sorted to follow

the same order as Figure 7.11.

through ignoring the phase response of the circuit. For the common-emitter amplifier

it is possible that the high frequency transitions in the signal are misaligned due to this

phase error, preventing a high level of fit. Other causes may be differences in distort-

ing behaviour of the BJT between model and device, as found in Chapter 4 albeit for

germanium BJTs, or variation in aliasing between model and measurements.

These two anomalous results present more of an issue than the general mismatch

found when comparing simulated and real measurement combinations of the tone

stack. This inaccuracy could be attributed to one of several issues, potentially a dif-

ference in noise characteristics between simulation and measurement that the low am-

plitude signals may be more sensitive to, or simply that the model can fit better to the

simulated measurements than the behaviour of the real circuit.

7.3.2 Identified parameters

Tone stack

Using all of the possible transfer functions of the tone stack, the parameters of the

circuit were estimated. To provide some understanding as to the repeatability of the

parameter estimation, 100 repeats were performed using starting parameter values se-
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Table 7.4: Parameters of the tone-stack, from left to right: component symbol and

units, the value specified by the schematic, the directly measured value using an LCR

meter and its tolerance, the resulting θts with the minimum ξ from the 100 sets, its

error relative to the directly measured values, and the standard deviation of the full set.

θts Spec. Direct Tol. Estim. Error RSD

R1 (kΩ) 100 99.35 ±0.52% 100.21 0.867% 1.22× 10−4%

Rt (MΩ) 1 1.023 ±1.03% 1.0213 0.170% 6.28× 10−5%

Rb (MΩ) 1 0.934 ±1.03% 0.93910 0.535% 1.88× 10−4%

R2 (kΩ) 10 9.947 ±0.32% 10.032 0.856% 1.29× 10−4%

C1 (pF) 56 56.84 ±1.28% 58.161 2.32% 7.38× 10−5%

C2 (nF) 22 21.65 ±0.39% 21.670 0.0923% 1.54× 10−4%

C3 (nF) 22 21.93 ±0.39% 21.969 0.178% 1.89× 10−4%

lected from ±40% of the accurate parameter values. The results of the optimisations

are displayed in Table 7.4.

From the 100 final sets of θts, one was selected which had the minimal correspond-

ing value of ξ, noted by the column header ‘Estim.’ which is used as a benchmark

to compare to the directly measured parameter values. Largely the parameters were

within 1% of the directly measured value, the exception being C1. Further, the ob-

served error is less than the tolerance of the LCR meter used to directly measure each

parameter value for 4 out of 7 parameters (Rt, Rb, C2, and C3).

The Relative Standard Deviation (RSD) of the full set of optimised θts is shown to

indicate the repeatability of the results. The maximum RSD value found is 1.89× 10−4,

revealing that from a wide variety of initial parameter values a highly accurate result

can be achieved.

Measurements of the tone stack transfer function and a model using the selected θts

are illustrated in Figure 7.14. The trends of each transfer function have been matched

for both amplitude and phase responses, with the exception of the high frequency phase

response, and also around the minima around 4 kHz of the transfer function th, bh.

The largest source of error between model and measurement appears to be the

50 Hz noise, causing up to 1 dB and 0.2 radians error. This error is still present de-

spite the exclusion of several samples around 50 Hz and 100 Hz. Further, noise is also

present across the low frequencies from 1 Hz to 5 kHz. Potentially with further aver-

aging and improvement of the measurement setup – specifically the placement of the

equipment relative to mains power – a higher degree of accuracy could be achieved
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with the tone stack parameters.

Common-emitter amplifier

Following from the simulated combination analysis two sets of optimisations were per-

formed, one using all signals and the other using only 1 & 3. For each combination

the optimisation was repeated 30 times using initial parameter values taken from a uni-

form distribution of ±10% of the measured parameter values (and specified parameter

values for the BJT), the results of the optimisation using all signals displayed in Table

7.5 and the for the optimisation using signals 1 & 3 in Table 7.6.

Referring to both sets of results, a clear discrepancy can be observed between the

results of the tone stack and those of the common-emitter amplifier: significantly more

error is found for the common-emitter. This is likely due to the distortion in the output

signal, the aliasing of the distortion, and the difficulty of the DAQ to accurately capture

the distortion’s high frequency content without phase error. Despite this increase in

error, several linear parameters in both sets of results achieve a high degree of accuracy

with the lowest being C3 for both combinations.

Similar levels of error are observed in both sets of results, correlating with the

results of the combination analysis. A notable difference between the two sets is that

the results when using all signals provides BJT parameter values with an overall lower

RSD than the results when only using sets 1 & 3. This aligns with the motivation of

choosing the low amplitude signals (2 & 4), showing that including wideband signals

with less distortion has improved the repeatability of estimating the BJT parameters.

One potential explanation for the generally higher error than the tone stack can be

found in the higher than average RSD values for each BJT, for both combinations of

signals. Most notably parameters Is and βr have significantly higher RSDs than the

linear parameters suggesting that the objective function is insensitive to these parame-

ters, and as such it is possible that their inaccuracy has been compensated for by other

parameters.

Displayed in Figure 7.15 is a comparison between the circuit measurements and

the model using the selected θce from the optimisation using all signals. For the low-

amplitude signals the resultant error is approximately 1 order of magnitude lower than

that of the signal, though as the signal is of low amplitude the noise floor does not

appear much lower. Further averaging may aid in the ability of the model to fit the

circuit, but this would require more consideration as to the temperature changes of the

BJT during the measurement to ensure the behaviour does not change.

High amplitude signals have a maximum error of approximately 1 Vpp. The far
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Figure 7.14: Optimised fit of the tone stack to measured data using values for θts as in

Table 7.4. Error signals are offset by 1 dB and 0.1 rad to prevent overlap.
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Table 7.5: Parameters of the common-emitter, from left to right: component symbol

and units, the value specified by the schematic, the directly measured value using an

LCR meter and its tolerance, the resulting θce with the minimum ξ from the 30 sets, its

error relative to the directly measured values, and the standard deviation of the full set.

Resultant parameter values are from optimisations using all excitation signals.

θce Spec. Direct Tol. Estim. Error RSD

R1 (kΩ) 470 466.8 ±1.06% 431.86 7.49% 0.599%

R2 (kΩ) 68 68.18 ±0.52% 70.868 3.94% 0.389%

R3 (kΩ) 3.9 3.834 ±0.35% 4.2550 11.0% 0.654%

R4 (kΩ) 10 9.997 ±0.32% 10.251 2.54% 0.496%

C1 (nF) 4.7 4.555 ±0.34% 4.6366 1.79% 0.391%

C2 (nF) 1000 964.5 ±0.32% 999.86 2.32% 0.296%

C3 (nF) 10 10.114 ±0.32% 10.226 1.14% 0.990%

Is (pA) 10 - - 2.7810 - 8.35%

N 1 - - 1.0375 - 0.303%

βf 200 - - 190.98 - 1.64%

βr 4 - - 21.387 - 99.2%

Table 7.6: Parameters of the common-emitter as above. Resultant parameter values are

from optimisations using excitation signals 1 & 3.

θce Spec. Direct Tol. Estim. Error RSD

R1 (kΩ) 470 466.8 ±1.06% 462.14 0.999% 0.438%

R2 (kΩ) 68 68.18 ±0.52% 71.020 4.16% 0.270%

R3 (kΩ) 3.9 3.834 ±0.35% 4.3888 14.5% 2.57%

R4 (kΩ) 10 9.997 ±0.32% 11.298 13.0% 1.94%

C1 (nF) 4.7 4.555 ±0.34% 4.4917 1.39% 0.179%

C2 (nF) 1000 964.5 ±0.32% 865.00 10.3% 1.82%

C3 (nF) 10 10.114 ±0.32% 10.203 0.880% 1.71%

Is (pA) 10 - - 1.3559 - 1120%

N 1 - - 1.0702 - 3.71%

βf 200 - - 161.57 - 2.17%

βr 4 - - 2.3059 - 498%
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Figure 7.15: Optimised fit of the common-emitter amplifier to measured data using

θce from Table 7.5. (left) Low amplitude signals and respective error, (middle) high

amplitude signals and error, (right) zoom of the middle plot showing peak error.

right plot focusses on the area in the signal at which this peak occurs, revealing that

the majority of the error in the signal appears at its transitions. This result is further

evidence of issues of matching the exact phase at high frequencies as was noted when

modelling the DAQ.

7.3.3 Model validation through change of load

Inspecting the parameter error directly provides one perspective of the success of the

parameter estimation, but a second perspective can be provided by validating the re-

sultant models through changing the load of the circuit and model and observing the

change in error. Should a model be able to adapt to a change in load without an in-

crease in the output error then the estimated parameter values can be used in circuits

that extend the chosen case study, for example placing the tone stack in front of an
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Figure 7.16: Validation of the tone stack by changing load component, comparing two

changes in capacitance and three changes in resistance. The dashed line marks the

optimised value of ξ with values of Cko and Rko as used for the optimisation.

amplifier circuit.

Tone stack

The tone stack was validated using 5 loads: 2 different capacitor values and 3 different

resistors. These components were chosen to demonstrate some possible adaptations

of the tone stack circuitry to provide different frequency responses, or the possibility

of connecting a successive circuit. While the capacitance was changed the output

resistance was omitted defaulting to Rai, and while the resistance was changed the

capacitance was omitted, defaulting to Cai. All of the transfer functions of the tone

stack were used in the validation of the model, with values in θts the same as select for

Table 7.4.

The results of the validation are shown in Figure 7.16. The value of ξ is only

ever lower than the resulting values of ξ from the optimisation. As such the valida-

tion is successful, suggesting that the estimated parameters are suitable for modified

circuits/models.

Common-emitter amplifier

Four different output resistors were used to validate the common-emitter amplifier,

each selected at decades between 1 kΩ and 1 MΩ, chosen to model the potential input
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Figure 7.17: Validation of the common-emitter amplifier by changing load resistance.

Four resistors were used to imitate the potential input impedances of a following guitar

pedal. The dashed line marks the optimised value of ξ with values of Cko and Rko as

used for the optimisation.

impedances of a following guitar pedal. Capacitance was not changed from the optimi-

sation. The set of θce chosen for the validation was from the results of the optimisation

using all signals.

The values of ξ for each of the validation loads is beneath that of the optimised

value of ξ, as displayed in Figure 7.17, suggesting that despite not achieving as high

parameter accuracy as the tone stack, the retrieved values are still suitable for mod-

elling modified circuits.

7.4 Conclusion

Identification of two circuits has been performed with the objective of estimation their

physical circuit parameters. For the first, linear case – the tone stack – parameters

were retrieved to a high degree of accuracy, which when used to model a circuit with

a modified load resulted in no increase in error between model and measurement. For

the second case – a common-emitter amplifier – less accuracy was achieved, likely

attributed to the nonlinear behaviour of the circuit. Resulting parameters were still

applicable in the modelling of the amplifier with different loads without increasing the

error between model and measurement.

Simulated data was taken a step further than previously in the thesis, and used to
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predict the optimisation results of the measured data. Through the inclusion of AWGN

general trends were captured for both circuits. This strategy could be repurposed to

predict the number of averages required to achieve a noise floor that yields sufficiently

low values of 〈εθ〉, given that no other non ideal effects present a limitation.

Two anomalous results in the prediction of 〈εθ〉 using simulated measurements

was seen in the high amplitude signals for the common-emitter amplifier. A likely

cause for this is the phase error in DAQ, further exacerbated by the high frequency

transitions present in said signals. A direct solution to this would be further analysis

and compensation of the DAQ to avoid this source of error. High frequency content

in the common-emitter amplifier signals also caused issues with regards to aliasing.

A preferable strategy would instead to be find a set of signals that reduces the need

for high frequency content to achieve parameter retrieval, thus avoiding issues with

aliasing and limitations of measurement equipment.

One shortcoming in the prediction of the results of the common-emitter amplifier

is that there is no reference set of BJT parameters with which to compare. This forced

the analysis to only use a subset of the parameters to predict the performance of the full

set. A relative high amount of error was indicated in the results of the optimisations on

measurements by the high values of RSD. For future study of the parameter estimation

of audio circuits, a tool akin to an LCR meter for nonlinear devices is necessary.
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Conclusion

The main aim of this work has been to address the disparity between real guitar effect

circuits and their corresponding physical circuit models. To that end two complemen-

tary identification strategies were proposed – calibration and parameter estimation –

that utilise optimisation to reduce the error between the input/output measurements

of a circuit and the simulated equivalent. The motivation was to provide modellers

of guitar effects (and more broadly audio effects in general) with strategies to better

relate their models to measurements of a real world equivalent. Results indicate that

the proposed identification procedures can not only improve the fit of the model to the

input/output behaviour but also be used to directly estimate the physical component

parameters of the circuit.

8.1 Summary and contributions

Chapter 2 discusses the current capabilities of physical Virtual Analogue (VA) mod-

els and the parallel track of identifying circuits with black and grey box models, both

progressing without intersection. Each electronic component present in case studies

throughout the thesis are shown with their most commonly selected physical I-V re-

lation, and demonstrated how using MNA, circuits featuring these components can be

converted into computable transfer functions and nonlinear state-space models. Exist-

ing investigations into the modelling of components for VA are discussed, noting the

complexity of measuring devices, determining underlying behaviour, and extracting

relevant physical parameters.

Chapter 3 details several root finding algorithms already used in solving the nonlin-

ear equations present in physical VA models. These algorithms are analysed for their

ability to converge within a time constraint, particularly in the multivariate case. The
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initial objective stated for this work was to find algorithms which provide robust and

efficient performance when simulating circuit models. Two extensions to Newton’s

method are introduced that use information derived from the form of the nonlinearity

in state space models to improve the robustness of the algorithm. From those investi-

gated, algorithms were determined that could successfully simulate both case studies

over a range of input amplitudes. In the scenario that high-amplitude signals are driv-

ing the circuit models a demonstrable improvement was found in both the robustness

and efficiency from the proposed algorithms. For the purpose of identification, should

the excitation signal cause the circuit model to fail with traditional algorithms, the

proposed algorithms provide an alternative which can extend the region of possible

excitation signals.

Chapter 4 details an analysis of the germanium BJT, motivated by notably differ-

ent behaviour when compared to a silicon equivalent. Analysis is performed through

performing DC measurements upon germanium BJTs and extending the Ebers-Moll

model until the curves are sufficiently fit. Resulting models of the OC44 and AC128

are placed in VA circuit models in which they were originally used, the Rangemaster

and Fuzz Face. Several levels of complexity in the BJT model are compared to de-

termine whether model extensions are required to properly model the BJT in physical

VA models. Results indicate a marked difference between the Ebers-Moll model and

the extended model. Should notable error be observed in a circuit model using BJTs,

several options have been given with which to extend the BJT model to improve the fit

to measurements of a real circuit.

Chapter 5 introduces the shared concepts behind the circuit identification strate-

gies presented in the following chapters. The utilised data is restricted to simulated

measurements to avoid noise and unmodelled behaviour that may appear in circuit

measurements, placing the focus instead on the design and analysis of the identifi-

cation problem. A vector of parameters is defined as the collection of each of the

circuit’s component parameters, the values of which are found through the application

of an optimisation algorithm that changes the values to minimise the difference be-

tween input/output measurements of a circuit and its model. Parameter redundancy is

detected in the input/output circuit models. How to handle this redundancy is different

for the two identification strategies: for calibration, a parameter is fixed to reduce the

computational cost of the optimisation, selected by finding the parameter to which the

objective function is least sensitive. For parameter estimation, an additional compo-

nent is added with known parameter values which alleviates the redundancy, produc-

ing demonstrably retrievable parameter values through optimisation. Designing and
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testing an excitation signal, objective function, and suitable models for optimisation

facilitates the following work in calibration and parameter estimation.

Chapter 6 completes the study of calibration within the thesis through application

to measurements of a Dallas Rangemaster Treble Booster circuit. Calibration is shown

to dramatically improve the capture of the input/output behaviour of the circuit with the

model in comparison to nominal parameters from a schematic. Validation metrics show

values of ξ that are up to 20× lower for the optimised model when processing sinusoids

over a range of frequency/amplitude combinations. Analysing the parameters to which

the objective function is least sensitive enables an optimisation time over 2.5× faster

for the Rangemaster model by fixing the value of 5 parameters, although also causing

a marginal increase in error between circuit and model. Secondary to the calibration

of the Rangemaster is a comparison between germanium and silicon BJTs within the

circuit, with results indicating that the circuit model is better at fitting the behaviour of

the Rangemaster with the germanium BJT than that using the silicon BJT. Overall the

calibration strategy is shown to successfully reduce the error between the input/output

relationship of a circuit and its model.

Finally, Chapter 7 applies the parameter estimation strategy to two real case study

circuits, the first a tone stack featuring multiple audio parameters and the second the

common-emitter amplifier with nonlinear behaviour. Parameter values are retrieved to

within 2.5% of their directly measured value for the tone stack, with most of the pa-

rameter values falling within the tolerance of the LCR meter used to directly measure

each component. Moderately accurate parameter values for the common-emitter am-

plifier are found, limited by aliasing and noise. Both cases exhibit no increase in error

when modelling modified circuits demonstrating that the estimated parameter values

could be used when combining the circuits with additional circuitry, for example in

a full amplifier or guitar-pedal signal chain. The identification process is shown to

be capable of estimating the component parameters of circuits though further work is

necessary to provide similar accuracy for the nonlinear common-emitter amplifier as

with the linear tone stack.

8.2 Future work

Due to their essential role in physical circuit models, the development of iterative

solvers will remain an important topic of research. Specifically for identification there

may be further necessity of particularly robust algorithms. Consider the case that a

circuit is highly nonlinear, and that to properly expose the behaviour of said circuit re-
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quires driving the circuit with high-amplitude, high-frequency signals. Simulation fail-

ure may occur for models with certain parameter values, preventing the optimisation

algorithm from exploring a region of the search space that may be where the optimal

parameter set lies. This possibility has not arisen within the case studies presented in

this work but may yet be encountered in those used in future work. Additional con-

sideration would then be necessary should a method like the New Iterate be selected,

as it was found that for the Fuzz-Face circuit that the new initial iterate often caused

non-convergence.

Vintage circuits feature a vast quantity of unique quirks that form the sonic palette

of musicians, many of which require individual attention. In this work this has been the

germanium BJT, researched for its usage in the Rangemaster. Further examples of this

are, to name a few: germanium diodes, nonlinear behaviour of inductors for example

in the Cry Baby wah pedal, and specific op-amps with limited slew rate as used in the

Proco RAT. An argument could be made for an archival investigation into such devices

– time will reduce the number of functioning devices, and without digitising through

accurate models, there may be a future in which none can recreate the guitar tones of

the music of yesteryear.

As the field progresses larger circuits will become possible to simulate in real time,

facilitated by the increase in available computational power. The next stages of re-

search into the calibration strategy presented in this work should be in its application

to circuits with more complexity and higher numbers of parameters. Presence of local

minima may become a larger issue with the increase in search space dimensions. Ap-

plication of parameter screening may offer a solution, not only reducing the cost of the

optimisation algorithm, but reducing the complexity of the search space by minimising

the number of dimensions it spans.

A wealth of future work is possible around the subject of parameter estimation

for nonlinear circuits. A limit has been found in this work: the accuracy of the pa-

rameters retrieved for the common-emitter amplifier was significantly lower than that

of the tone stack, making overcoming the issues caused by nonlinearities an inter-

esting challenge. Investigation of the parameter estimation strategy is limited by the

expense of the model simulation which is repeated thousands of times in the optimi-

sation algorithm. Model complexity is a trade off between the range over which the

model accurately captures behaviour and computation time. One solution to the issue

of model complexity is referred to as ‘space mapping’ in which a ‘coarse’ model that is

less computationally demanding is used with optimisation to find good estimates of the

parameters, before transitioning to a ‘fine’ model which can be used to achieve higher
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accuracy estimates [105]. For the common-emitter amplifier this could be found in the

utilisation of a linear BJT model so that the circuit can be modelled as a transfer func-

tion, then moving to the complete state space model for details about the nonlinearity.

Both noise and distortion limited the success of estimating the parameters of the

common-emitter amplifier. The inherent problem is that both signal to noise ratio

present in the circuit measurement and aliasing from harmonic distortion in the output

of the circuit model typically increase relative to the input signal amplitude. An ideal

measurement strategy would find the sweet-spot at which aliasing is minimised and

signal to noise ratio is maximised, or utilises a divide-and-conquer approach. The

solution may be as simple as using more specifically designed hardware, with a lower

noise range over the audio band, though this solution adds an additional hurdle to

those wanting to utilise the identification process. An alternative is to use anti-aliasing

strategies implemented directly in the physical circuit model, e.g. [54].

Different values of audio parameters have been used in a single model of the tone

stack when estimating its parameters. By including multiple audio parameter values

in the identification – should the process be successful – it is given that the model

accurately represents the circuit at these values. What is not certain is how accurately

the model fits to measurements of a circuit at values in between the audio parameter

values used in the measurements. Potentiometers specifically have different laws as to

how resistance changes as the wiper passes over the track. An interesting study would

be to identify these potentiometer laws such that the model can accurately represent

the circuit at any given combination of audio parameter values.
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Appendix A

OC44 Datasheet
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Appendix B

AC128 Datasheet
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Appendix C

Vox AC30 Datasheet

Available, https://www.korguk.com/voxcircuits/, accessed 29/10/2018.
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Appendix D

E-Appendices

Further supporting material is located at http://bholmesqub.github.io/thesis/.

• A video demonstrating the change in the behaviour of the diode clipper relative

to input amplitude, visualising nonlinear impulse responses.

• MATLAB code for the root-finding algorithms in Chapter 3.

• Sound examples of the circuit models with different BJT component models in

Chapter 4.

• MATLAB code for the multi-sine excitation signal described in Section 5.2.1.

• Sound examples of the Dallas Rangemaster Treble booster that is calibrated in

Chapter 6.

• MATLAB code for the symbolic detection of redundancy of an RC circuit trans-

fer function presented in Chapter 5.

• Sound examples of the identified tone stack and common-emitter amplifier in

Chapter 7.
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